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[1] While sea level rise is one of the most likely consequences of climate change, the
provoked costs remain highly uncertain. Based on a block-maxima approach, we provide a
stochastic framework to estimate the increase of expected damages with sea level rise as
well as with meteorological changes and demonstrate the application to two case studies. In
addition, the uncertainty of the damage estimations due to the stochastic nature of extreme
events is studied. Starting with the probability distribution of extreme flood levels, we
calculate the distribution of implied damages in a specific region employing stage-damage
functions. Universal relations of the expected damages and their standard deviation, which
demonstrate the importance of the shape of the damage function, are provided. We also
calculate how flood protection reduces the damages leading to a more complex picture,
where the extreme value behavior plays a fundamental role.
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1. Introduction

[2] In the debate about climate change induced sea level
rise, land loss is a commonly mentioned consequence
[Nicholls et al., 2010; Devoy, 2008]. On a closer look,
however, it turns out that land loss itself is often a result of
extreme events, such as storm surges, which either erode
the coastline [Stive et al., 2002] or inundate the considered
area so frequently that a repeated restoration might be inef-
ficient and the land is abandoned.

[3] Considering sea levels, one can observe that the
mean sea level is superposed by fluctuations, whose magni-
tudes significantly surpass the expected mean sea level rise.
Accordingly, if one wants to investigate consequences of
sea level rise, these fluctuations need to be taken into
account. Tides and winds are the main influencing factors
of these fluctuations [Woodworth et al., 2011] and together
with the mean sea level they determine the magnitude of an
extreme event. Thus, extreme floods are influenced by cli-
mate change in two ways: via sea level rise and via meteor-
ological changes. We study the consequences of these two
effects as well as the impact of potential flood protection
measures on the expected flood damages, where damages
describe the monetary losses in a specific area. Further-
more, the variability of the damages is examined.

[4] We employ extreme value theory for the characteri-
zation of flood events [Katz, 2010], and damage functions
[Merz et al., 2010], in order to obtain the associated dam-
ages. Accordingly, the distribution of extreme sea levels is
translated via the damage function into the distribution of
damages, i.e., the probability that a damage higher than a
certain value occurs is related to the probability that the an-
nual maximum flood exceeds a certain level. In particular,
sea level rise, which is the main driver for changing extreme
value behavior [Men�endez and Woodworth, 2010], leads to
modified damages. Additionally, climate change could alter
meteorological patterns, which induces a change of variabil-
ity of extreme events [McInnes et al., 2013; Woth et al.,
2006] and in turn affects the damage distribution.

[5] We elaborate this setting in a general sense and ana-
lytically derive relations for the expectation value of the
damages and the standard deviation as a function of the
mean sea level and as a function of the variability of annual
maximum sea levels. The resulting expressions describe the
asymptotic behavior and highlight the importance of the
damage function. We complement the results with an analy-
sis of the effect of a protection measure in the form of a
dike or a sea wall protecting the area from floods up to a
specific maximum sea level. Again, we derive analytical
expressions and find that in this case the expressions depend
sensitively on the extreme value behavior of sea levels.

[6] All general results are supported by numerical calcu-
lations for the city of Copenhagen and a case study area in
Kalundborg (Denmark).

[7] The manuscript is organized as follows. In section 2,
our approach connecting extreme sea levels and damage func-
tions is introduced. Information on the two case studies is pro-
vided in section 3. Changes in the extremes are presented in
section 4 and the influence of protection in section 5. In sec-
tion 6, we draw conclusions and discuss limitations of our
findings. Detailed derivations are provided in the Appendix A.
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2. Methodological Approach

[8] We want to estimate the annual, monetary damages
caused by coastal floods. For this purpose, we assume there
is one extreme flood per year in the considered region and
obtain the corresponding damage costs from a macroscopic
damage function, providing the typical damage of a coastal
flood of specific magnitude (other contributing factors such
as inundation duration or flow velocity [Wind et al., 1999;
Thieken et al., 2005; Middelmann-Fernandes, 2010] are
not taken into account).

[9] Thus, we consider the distribution of annual maxi-
mum sea levels and derive the distribution of annual dam-
ages by using the damage function. Naturally, if the
distribution of maxima changes, the distribution of damages
is also altered. This is the starting point of our approach.
Once the distribution of damages is known, the expectation
value and the standard deviation can be calculated. More-
over, protection measures modify the damage function, e.g.,
sea walls determine the flood level below which no damage
occurs.

[10] The approach is sketched in Figure 1. The distribu-
tion of maximum sea levels is illustrated in Figure 1a, the
damage function in Figure 1b, and the distribution of dam-
ages in Figure 1d. An alternative damage function suppos-
ing a protection measure is displayed in Figure 1c, leading
to a different damage distribution.

2.1. Extreme Value Statistics

[11] The reason why we base our analysis on extreme
value statistics is that in general the distribution of sea lev-
els is unknown. Considering a certain case study, one can
analyze the gauge sea level values (if available in high re-
solution and with sufficient statistics), generate a histogram
in order to estimate the distribution and make assumptions
about its functional form. Next, one can impose a sea level
rise and move the distribution in order to estimate the
increase of damages. The problem, however, is that the sea
level distributions differ from gauge to gauge and the
assumption about the functional form is not transferable.

Therefore, such an approach is hardly feasible in practice,
and typically, extreme value theory (which is well estab-
lished in flood frequency analysis and mathematically sub-
stantiated) is employed. We follow a widely spread extreme
value method––namely, the block maxima approach.

[12] The maxima in blocks of asymptotic length follow
the generalized extreme value (GEV) distribution [Coles,
2001; Leadbetter et al., 1983; Embrechts et al., 1997],
characterized by three parameters: � (location), � (scale),
and � (shape). It combines the Gumbel (�¼ 0), Fr�echet
(� > 0), and Weibull (� < 0) families and has the following
cumulative distribution function:

P�;�;� xð Þ ¼
exp � 1þ � x� �

�

� ��1=�
� �

if � 6¼ 0;

exp �exp � x� �
�

� �h i
if � ¼ 0;

8><
>: (1)

where the corresponding probability density function is
denoted by p�;�;�. In practice, this distribution is used to ap-
proximate the distribution of maximum annual water levels
[Hawkes et al., 2008], which is in general unknown.

2.2. Damage Functions

[13] Most commonly, a damage function describes the
damage to an asset, given a certain inundation depth, either
as a percentage damage rate (relative) or as a monetary
value (absolute). Several damage models have been pro-
posed in literature, which are typically associated to certain
asset types and exhibit different functional forms [Merz
et al., 2010].

[14] When one wants to calculate the total damage from
a certain flood event, the inundation heights at each asset in
the affected region need to be determined (e.g., by hydro-
dynamic modeling) and the single damages (obtained by
small-scale damage functions) are aggregated. We call
such a damage function, providing the total damage in a
case study region as a function of the sea level, macro-
scopic. The availability of macroscopic damage functions
in literature is very scarce and their general form unknown.

Figure 1. Illustration of the damage model. (a) The distribution of annual maximum water levels trans-
forms via (b), the damage function, into (d), the probability density of damages. (c) An implemented
protection measure filters moderate events up to a threshold ! and leads to a modified damage function. In
this case, the damage distribution Figure 1d (dashed, blue line) consists of an additional discrete part in 0,
which cannot be depicted. (Photographs ‘‘Ilmpegel Ilmenau’’ by M. Sander (2006, http://commons.wiki-
media.org/wiki/File:Ilmpegel_Ilmenau.JPG) and ‘‘Flooding in Nashville, Tennessee’’ by E. Hamiter
(2010, http://commons.wikimedia.org/wiki/File:Nashville_Flood.jpg) used under a Creative Commons
Attribution-ShareAlike license: http://creativecommons.org/licenses/by-sa/3.0/).
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Two functions are provided by Hallegatte et al. [2011] and
Boettle et al. [2011], which can be well approximated by
power laws, i.e.,

F xð Þ � x�; (2)

with a damage function exponent � > 0 (in order to ensure
the existence of the standard deviation of damages, we fur-
ther need to assume � < 0:5=� in the case � > 0). While in
most literature, (stage-)damage functions refer to individual
buildings or assets [e.g., B€uchele et al., 2006; Merz and
Thieken, 2009; Dutta et al., 2003], here they refer to an
entire region under consideration. This macroscopic dam-
age function provides an aggregate of the building damages
as obtained from microscopic damage functions [Boettle
et al., 2011], i.e., it gives an estimate of the total monetary
damage if case study YZ is affected by a coastal flood of
maximum flood level x.

2.3. Computational Calculations

[15] Combining the damage function F with the probabil-
ity density function p�;�;� of the GEV distribution, for the
expected annual damage holds ED :¼

R1
�1 F xð Þp�;�;� xð Þdx

and for its standard deviation STD D :¼ ð
R1
�1 ED � F xð Þð Þ2

p�;�;� xð ÞdxÞ1=2. For the numerical calculations, the integrals
need to be discretized and the range of integration to be
bounded. Here the interval xmin ; xmax½ � was partitioned by
equidistant steps of width �x, where xmin is the highest water
level for which no damage occurs and xmax represents the
100,000 year event (or the highest possible sea level in the
Weibull case) at the current conditions. For varying
protection heights, xmax was adjusted correspondingly.
Naturally, due to computational limitations, a tradeoff
between increment size and the highest considered annuality
has to be made. We found that taking into account return lev-
els of up to 100,000 years, both sources of error could be kept
negligible. The equidistant spacing of the interval xmin ; xmax½ �
with midpoints x1; . . . ; xN yields the discrete approximations

ED � �x
XN

i¼1

F xið Þp�;�;� xið Þ and (3)

STD D � E2
DP�;�;� xminð Þ þ�x

XN

i¼1

ED � F xið Þð Þ2p�;�;� xið Þ
 !1=2

:

(4)

Using these equations, the expected annual damage and its
variability are calculated for changing parameters in
sections 4 and 5.

3. Case Studies

[16] In order to support our theoretical findings, we con-
sider two case studies in Denmark: Copenhagen and
Kalundborg. While Copenhagen, the capital, has more than
500,000 inhabitants, Kalundborg is much smaller, and the
case study refers to a threatened small population area in the
south of the city of Kalundborg. For both regions, a macro-
scopic damage function is available. In the Copenhagen
case, Hallegatte et al. [2011] elaborated a curve, which

provides the direct losses to buildings and their contents in
several sectors as well as infrastructural damages in the ab-
sence of protection as a function of flood level. The objec-
tive of this study was to assess the economic impacts of
climate change and possible benefits of adaptation. For
Kalundborg, Boettle et al. [2011] derived a damage function,
comprising monetary damages to residential buildings in the
area and investigated the macroscopic damage function for
different elevation model qualities and small-scale damage
functions.

[17] The case studies have been chosen because two
essentials are available: (i) a record of annual maximum sea
levels and (ii) a macroscopic damage function. Any other
case study providing both would be equally applicable.

3.1. GEV Parameter Estimation

[18] In order to obtain an estimation of the extreme value
parameters for the Copenhagen gauge, a time series of max-
imum water levels at the gauge in the harbor of Copenhagen
between 1890 and 2007 was analyzed. The data set consists
of 95 values, which represent the maximum water levels
within a hydrological year (October–September). The esti-
mation of extreme value parameters requires the assumption
of constant parameters. Although this is not given in prac-
tice, removing the mean sea level trend should legitimate
the assumption of a stationary location parameter. After
adding a linear trend of 0.45 mm per year (derived from
mean sea level data, available at http://www.psmsl.org), the
GEV parameters � � 87:50; � � 18:98, and � � �0:19
were obtained as maximum likelihood estimators for cen-
sored sample data [Phien and Fang, 1989]. This implies a
Weibull distribution of annual peak values (in agreement
with Hallegatte et al. [2011]) with a maximum water level
of approximately 187 cm.

[19] The analogous analysis of 32 maximum water levels
at the gauge in Kalundborg between 1971 and 2006 com-
bined with mean sea level data from the Kors�r gauge close
to Kalundborg provided estimates for the GEV parameters,
again using a maximum likelihood estimation for censored
sample data [Phien and Fang, 1989]. The values � � 91:30
(location), � � 16:96 (scale), and � � 0:00 (shape) were
obtained, implying a Gumbel distribution, which is
unbounded on both sides. Due to the small sample size,
these estimates cannot be considered as reliable. Neverthe-
less, we will proceed with these estimates since more
extensive data were not available and the exact parameters
are not crucial for our purpose.

3.2. Extrapolation of Damage Functions

[20] The damage functions of both case studies are mac-
roscopic damage functions providing monetary damages
for flood levels of variable magnitude. In case of strongly
altered GEV parameters, future flood heights might exceed
the maximum level covered by the damage functions.
Accordingly, in order to evaluate our results, we need to
extend the damage functions to higher levels. The shape of
such a continuation is in general unknown. Although a sat-
uration of damages for sea levels above a certain magnitude
seems plausible, at which point this saturation is reached is
not clear and even an increased steepness cannot be ruled
out in case further areas become affected by extreme sea
levels. Therefore, we extrapolate the curves with the same
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behavior as they expose for lower sea levels––namely by a
power law (see below).

[21] The damage function for the city of Copenhagen
was published by Hallegatte et al. [2011] and was obtained
from St�ephane Hallegatte. It provides the direct losses for
water levels between 0 m and 4 m above current mean sea
level. Figure 2 depicts the curve and the extrapolation as a
power function.

[22] In Boettle et al. [2011], the Kalundborg case study
was treated in detail, including the elaboration of a macro-
scopic damage function for water levels between 0 m and
4 m (Figure 3). As in the Copenhagen case study the fol-
lowing extrapolation technique was used.

[23] The given damage functions were extrapolated by fit-
ting the power law, equation (2), with an additional propor-
tionality constant to the available curve. Only water levels
for which the curve shows power law behavior, i.e., above a
certain threshold, were used for the fitting. The thresholds
were 20 cm in Copenhagen and 140 cm in Kalundborg. Min-
imizing the mean-squared error, the exponents � � 1:57
(with 95% confidence interval [1.56, 1.59]) and � � 4:06
(with 95% confidence interval [4.00, 4.12]) were estimated
for Copenhagen and Kalundborg, respectively.

4. Changes in the Extremes

[24] We investigate how damages are influenced by
changes in the water level extremes. Considering sea level
rise, we assume that it is solely reflected in an increasing
location parameter � of the flood level GEV distribution
[Kauker and Langenberg, 2000], which corresponds to a
shift of all flood levels by the corresponding sea level rise.
In contrast, an alteration of the scale parameter � could be
attributed to altering meteorological conditions.

[25] We derive the distribution of damages as caused by
the distribution of block maxima via a general damage
function of the form of equation (2) and determine the ex-
pectation value ED and the standard deviation STD D of the
damages. Finally, we provide the dependencies of ED and
STD D on � and �.

4.1. Influence of the Location Parameter

[26] First, we investigate a systematic alteration of the
location parameter �. This describes a simple shift of today’s
extreme events toward higher water levels. As derived ana-
lytically in Appendix A, we find that the expected annual
damage, equation (3), increases asymptotically for high val-
ues of � with the damage function exponent �, i.e.,

ED �ð Þ � ��: (5)

Since damage functions are typically steeper than linear
[e.g., Hallegatte et al., 2011; Boettle et al., 2011], the dam-
age increases faster than the sea level. Presuming a certain
case study where the damage increases cubically with the
flood level (i.e., �¼ 3, which is between the values of both
case studies) and assuming that the sea level rises quadrati-
cally over time at the corresponding coast (as suggested by
Rahmstorf et al. [2012]), equation (5) implies that the
expected annual damages increase with exponent 3� 2 ¼
6 over time.

[27] The damage variability, which emerges from the
stochasticity of extreme events, can be characterized by the
standard deviation STD D as a measure of uncertainty. For
large �, we obtain asymptotically

STDD �ð Þ � ���1; (6)

as derived in Appendix A. This expression comprises only
the aleatory uncertainty, i.e., the inherent variability due to
stochasticity. Further (epistemic) uncertainties [Thieken
et al., 2005], for instance, caused by the vague stage-damage
relation, are not considered in this context. A quantification
of these uncertainties would require very detailed additional
information about the building damage functions and the
entire inundation process (e.g., possible flow velocities, con-
taminations, etc.). Including these uncertainties, significantly

Figure 2. Damage function (green) for the case study Co-
penhagen obtained from Hallegatte et al. [2011]. The inset
additionally shows the extrapolation as a power law with
exponent � � 1:57 (dashed red) in double logarithmic
scale.

Figure 3. Damage function (blue) in the case study area
Kalundborg using quadratic building damage functions and
a flood fill algorithm via four nearest neighbors [Boettle et
al., 2011]. The inset additionally shows the extrapolation as
a power law with exponent � � 4:1 (dashed red) in double
logarithmic scale.
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higher values for the standard deviations could be expected
[Merz et al., 2004].

[28] In case of rising sea levels at a specific site with
� > 1 (which in general can be presumed) both, the
expected damages and their standard deviation, increase.
However, the standard deviation grows less steep, which
leads to decreasing relative errors of our estimates
STD D=ED. This reduced relative variability of annual dam-
ages can be perceived as a better predictability of flood
damages, since the relative deviation of the real damages
from our estimates becomes smaller. We would like to note
that both relations are independent of the extreme value
type, i.e., independent of �.

[29] These general asymptotic findings shall be com-
pared with calculations from the case studies. Using the
Copenhagen damage function with a power law extrapola-
tion for water levels above 4 m and the determined GEV
parameters, Figure 4 exhibits the numerically calculated
expectation values and standard deviations of damages as a
function of the location parameter. It can be seen that a ris-
ing sea level and the corresponding shift of � leads to an
increase of damages, approaching the asymptotic relation
expressed by equation (5). The same holds for the standard
deviation and equation (6).

[30] At this point, we are also interested on how the
expected damages evolve in time. From the Dynamical
Interactive Vulnerability Assessment (DIVA) tool [Hinkel
and Klein, 2003; Vafeidis et al., 2008], mean sea level pro-
jections for the city of Copenhagen have been extracted for
several socioeconomic scenarios [Intergovernmental Panel
on Climate Change (IPCC), 2000]. Assuming that changes
in mean sea levels take place in the form of a shift of
extreme events, we add sea level changes to the location
parameter � of the GEV distribution. Sea level projections

are shown in Figure 5a for two socioeconomic scenarios:
(i) the ecologically friendly and globally homogeneous sce-
nario B1 supposing medium climate sensitivity and (ii) a
rapid economically growing world A1B with a balanced
emphasis on all energy sources, supposing high climate
sensitivity. As can be seen in Figure 5b, the corresponding
expected damages are steeper than the rise itself. Finally,
an increase of flood risk by the factors 1.48 (B1, medium
climate sensitivity) and 2.37 (A1B, high climate sensitiv-
ity) for a mean sea level rise of 28 cm (B1) and 74 cm
(A1B) by 2100 was found.

[31] Figure 6 is the analogue of Figure 4 for the Kalund-
borg case study. The expected damages and standard devia-
tions for varying parameter � show good agreement with
the asymptotic results already for moderate parameter val-
ues. The asymptotic behaviors in equations (5) and (6)
therefore provide good estimations.

4.2. Influence of the Scale Parameter

[32] Climate change can also affect the scale parameter
� of the water level distribution [Mudersbach and Jensen,
2010], which reflects changes in the variability, e.g.,
through evolving meteorological patterns. For varying �,
we obtain asymptotically (again, independent of �) :

ED �ð Þ � �� and STD D �ð Þ � ��; (7)

as analytically derived in Appendix A. Accordingly, the
expected annual damage increases with the width of the
distribution of maximum sea levels following the same
degree as the damage function. Contrary to equation (6),
this also holds for the standard deviation. Hence, the rela-
tive uncertainty STD D=ED is (asymptotically) constant
being basically unaffected by changes in the width of the
extreme value distribution.

[33] For the Copenhagen case study, the asymptotic pre-
dictions from equation (7) for a varying shape parameter �
are confirmed in Figure 7. However, a less steep increase
for � close to the present value �0 is found. The analogous
results for Kalundborg are shown in Figure 8. In this case,
the curves show good agreement with the asymptotic results
already for parameter values around the current value �0. In
summary, the asymptotic findings show the same sensitivity
of damages for a changing variability as for changing sea
levels. However, both case studies suggest a less steep
increase in the near future.

5. Influence of Protection Measures

[34] Finally, we investigate how the expected damage
and the uncertainty depend on the height of hypothetical
protection measures. For this purpose, we follow the same
approach as in section 4 but take protection measures, such
as a dike or a sea wall, into account by censoring small
floods, i.e., setting the damage function to zero below the
corresponding threshold value !. Please note that our
model excludes protection failures such as dike breaches.
The parameters � and � are kept constant. Then, we study
the damage distribution and extract the expectation value
and the standard deviation of the damages as functions of
the protection height !.

[35] In contrast to the previous results, the expected
damages as a function of the protection height depend

Figure 4. Expected annual damage (dark green) and
standard deviation (light green) in Copenhagen as a function
of the location parameter � of the GEV distribution. The
solid lines were numerically calculated with the available
damage function using equations (3) and (4), the dashed con-
tinuations used an extrapolation of the damage function as a
power law with exponent � � 1:57 (see Figure 2). The dot-
ted lines show the asymptotic relations equations (5) and (6).
The current value of the location parameter �0 � 88 cm is
displayed as a brown vertical line.
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fundamentally on the GEV type. The asymptotic relations
are analytically derived in Appendix A.

[36] 1. Gumbel case. We find in the Gumbel case (�¼ 0)
the asymptotic relationship

ED !ð Þ � !�e�!=�; (8)

for large !. The decay is independent from � and domi-
nated by an exponential component. It is noteworthy, that
the range of !, for which the expression in equation (8)
increases, is not relevant for the asymptotic behavior.

[37] 2. Fr�echet case. For asymptotically large !, we find
a power law decay in the Fr�echet case (� > 0):

ED !ð Þ � !��1=�; (9)

which is independent from the scale parameter �.
[38] 3. Weibull case. In the Weibull case (� < 0), the pos-

sible water levels are bounded from above, which implies
that the water level cannot exceed a certain maximum
value xmax . Hence, within our model, a protection height of
xmax guarantees full flood safety and the expected damage
becomes 0. Therefore, we investigate the behavior for a

Figure 5. (a) Mean sea level projections for Copenhagen provided by the DIVA tool [Hinkel and
Klein, 2003; Vafeidis et al., 2008] for the SRES scenarios A1B (high) and B1 (medium). (b) The
expected annual damage as a function of time, based on the two scenarios. The dashed lines are reference
curves according to f yearð Þ ¼ year � kð Þ� with k¼ 1650 and � ¼ 4:5; 3:5; 2:5; 1:5 (from top to bottom).
The inset shows the same curves in a semilogarithmic scale.

Figure 6. Expected annual damage (dark blue) and stand-
ard deviation (light blue) in the case study area Kalundborg
as a function of the location parameter � of the GEV distribu-
tion (analogous to Figure 4). The solid lines were calculated
with the available damage function and its extrapolation as a
power law with exponent � � 4:1. The dotted line represents
the asymptotic relations equations (5) and (6). The current
value of the location parameter �0 � 91:3 cm is displayed as
a brown vertical line.

Figure 7. Expected annual damage (dark green) and
standard deviation (light green) in Copenhagen as a func-
tion of the scale parameter � of the GEV distribution. The
dotted line shows the theoretical asymptotic results from
equation (7). The current value of the scale parameter �0 �
19 cm is displayed as a brown vertical line.
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protection height approaching the maximum water level
from below and obtain asymptotically for !! xmax :

ED !ð Þ � xmax � !ð Þ�1=�: (10)

Remarkably, this expression is independent from the power
of the damage function �––in contrast to the other cases.
Still, due to its range of validity, this result is rather of theo-
retical interest.

[39] The corresponding standard deviations are given in
Table 1. They differ by a factor 0.5 in the exponents from
the expressions for the expectation value. For the Gumbel
case, we find an exponential and for the Fr�echet case a
power law decay. Therefore, in the latter case the damages
decrease much slower with enhanced flood defense. How-
ever, in both cases, there is always a residual risk, which
vanishes in the Weibull case for large enough !. Accord-
ingly, although protection suggests safety, it cannot avoid
very extreme events in the Gumbel and Fr�echet cases. This
is also reflected in the increasing relative uncertainty,
STD D=ED, which indicates a higher contribution of ‘‘low-

probability high-impact’’ events to the total damage [Merz
et al., 2009].

[40] The expressions were calculated for the case studies
and are displayed in Figures 9 and 10. Since the extreme
values of the Copenhagen case follow the Weibull distribu-
tion, we use equation (10) and find good agreement
between the numerically calculated damages and the pre-
dictions for protection levels above 100 cm. Also for
Kalundborg (Gumbel distribution) a good approximation of

Figure 8. Expected annual damage (dark blue) and stand-
ard deviation (light blue) in the case study area Kalundborg
as a function of the scale parameter � of the GEV distribu-
tion (analogous to Figure 7). The dotted lines represent the
theoretical asymptotic results from equation (7). The cur-
rent value of the scale parameter �0 � 17 cm is displayed
as a brown vertical line.

Table 1. Summary of the Asymptotic Behavior of Expected
Damages and the Standard Deviations as a Function of Involved
Parameters �, �, and !a

Location � Scale � Protection Height !

ED ��� ���
�!�e�!=� if � ¼ 0

� xmax � !ð Þ�1=� if � < 0
�!��1=� if � > 0

STD D ����1 ���
�!�e�0:5!=� if � ¼ 0

� xmax � !ð Þ�0:5=� if � < 0
�!��0:5=� if � > 0

aThe asymptotics hold for !! xmax in the case � < 0 and for large
parameter values otherwise.

Figure 9. Expected annual damage (dark green) and
standard deviation (light green) in Copenhagen as a func-
tion of the difference between the protection level ! and
the maximum possible water level xmax � 186:9 cm. The
dotted lines follow a power law with exponent �1=� (dark
green) and �0:5=� (light green) as expressed by equations
(10) and (A15), respectively, where � � �0:19. Please note
that the abscissa has been inverted in order to illustrate that
the quantities decrease with increasing protection level !
(on top, corresponding protection heights are displayed).

Figure 10. Expected annual damage (dark blue) and
standard deviation (light blue) in the case study area
Kalundborg as a function of the protection level !. The dot-
ted lines follow !�e�!=� and !�e�0:5!=� as expressed by
equations (8) and (A19).
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the numerical calculation by equation (8) is found for pro-
tection heights above 140 cm. For lower protection levels,
there is no visible effect on the damages, which implies
that the maximum annual sea level exceeds the height in
most years and makes the protection measure dispensable.

[41] Performing a cost-benefit analysis, these results can
be used to derive an optimal protection height, for which
the total costs, comprising implementation costs and resid-
ual damages, are minimized.

6. Conclusions

[42] We have derived expressions for the expected dam-
age from coastal floods and its standard deviation for a gen-
eral case study region as a function of varying location and
scale parameters. The findings are complemented with the
corresponding expressions as a function of the protection
height, i.e., the value below which any damage is suppressed.

[43] The relations are summarized in Table 1. In particu-
lar, we find that while the expectation value increases as a
power law with the location parameter involving the dam-
age function exponent �, the standard deviation comprises
an exponent �� 1. Hence, the relative uncertainty, i.e., the
ratio of both quantities decreases as ��1 with the conse-
quence that, from a relative perspective, the damages
become more certain. For instance, the relative error of our
estimation for Copenhagen, STD D=ED, which currently
amounts to 34% would decrease to approximately 26%,
supposing 20 cm of sea level rise. This also indicates, that
the expected damages are increasingly determined by more
common floods and that the contribution of ‘‘low-probabil-
ity high-impact’’ events to the expected damages declines
with rising sea levels.

[44] This does not hold for the quantities as a function of
the scale parameter. Here the expectation value and the
standard deviation increase with the same exponent and the
relative uncertainty is constant. In fact, all relations are
power laws with exponent �, except the standard deviation
as a function of � which goes with a by 1 reduced
exponent.

[45] Surprisingly, the expressions are universal, i.e., the
expectation value and the standard deviation as a function
of location and scale parameter are all independent of the
shape parameter � of the extreme value distribution. This
makes the results easy applicable to arbitrary regions, since
no information about the extreme value behavior is neces-
sary. Overall, the damage function exponent �, that appears
in all relations, is the most decisive factor for the estimation
of future damages. If � > 1, as in both case studies, the
expected damages rise superlinear with the sea level.

[46] Investigating the influence of protection measures,
we find different expressions for the different GEV types
(see last column of Table 1). While the Gumbel case
involves the scale parameter and the damage function
exponent, the Fr�echet case involves the shape parameter
and the damage function exponent, and the Weibull case
involves the shape parameter and surprisingly not the dam-
age function exponent. Interestingly, in all cases, the expec-
tation value and the standard deviation differ only by a
factor 0.5 in the exponent. Accordingly, the relative uncer-
tainty increases and the damages become more uncertain
the higher the protection level is.

[47] Since, in general, sea level records follow an
unknown distribution, we applied a block-maxima approach,
which allows to describe the highest water level per year by
one of three limiting distributions. These GEV distributions,
in turn, can be fully examined. However, the drawback are
inherent limitations. Since our block maxima approach con-
siders only the largest flood event per year and neglects pos-
sible further floods. At the current conditions, this is only a
minor shortcoming, since coastal floodings are per se rare in
most areas, which is expected to change with rising mean
sea levels. However, the integration of additional flood
events (e.g., the second largest per year) in the framework
would cause further inaccuracies, since several events in
quick succession would not lead to independent damages.

[48] In summary, based on a set of assumptions, simple
analytic expressions have been found for all dependencies.
Although these results are derived for the asymptotic case,
they showed good agreements with the numerical calcula-
tions from the two case studies. Therefore, the results pro-
vide a reasonable estimation for the development of future
damages and could be employed in integrated assessment
models in the context of climate impact research [e.g., Tol,
2002].

Appendix A: Asymptotic Relations

[49] The asymptotic relations in equations (5)–(10) are
proven analytically in Theorems 1–5. Additionally, rela-
tions for the standard deviation of annual damages with
respect to the protection height are provided. Some of the
results (Theorems 3–5) are shown only for power damage
functions with integer exponents, and their general validity
could still be confirmed by numerical calculations follow-
ing equations (3) and (4). For all considerations with regard
to Fr�echet-distributed water levels, the assumption � < 1=�
has to be made [Katz et al., 2002] in order to ensure the ex-
istence of the expected damage. An even stricter limitation
of � < 0:5=� is necessary for the examination of the corre-
sponding standard deviations. All following integrals with-
out integration limits are meant to integrate over the largest
possible interval, typically over the support of the corre-
sponding probability distribution.

[50] We start with some general lemmas to arrange the
subsequent theorems more clearly.

[51] Lemma 1. Given a probability density p with exist-
ing rth moment mr ¼

R
xrp xð Þdx and r; a; b 2 Rþ, for the

integral

Ia;b :¼
Z

aþ bxð Þrp xð Þdx (A1)

holds

lim
a!1

Ia;b

ar
¼ 1 and lim

b!1

Ia;b

br
¼ mr: (A2)

[52] Proof. The integral can be written as

Ia;b ¼ ar

Z �
1þ b

a
x
�r

p xð Þdx ¼ br

Z
a

b
þ x

� �r
p xð Þdx;
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and the uniform convergence of the integrands for a!1
and b!1, respectively, allows the swapping of the inte-
gral and the limit. It follows

lim
a!1

Ia;b

ar
¼
Z

lim
a!1

�
1þ b

a
x
�r

p xð Þdx

¼
Z

p xð Þdx

¼ 1:

and

lim
b!1

Ia;b

br
¼
Z

lim
b!1

a

b
þ x

� �r
p xð Þdx

¼
Z

xrp xð Þdx

¼ mr:

w

[53] Lemma 2. Given a probability density p with exist-
ing 2rth moment m2r ¼

R
x2rp xð Þdx and r; b 2 Rþ, for the

integral

Ia :¼
Z

aþ bxð Þ2rp xð Þdx�
Z

aþ bxð Þrp xð Þdx

� �2

(A3)

holds

lim
a!1

Ia

a2r�2
¼ const : 6¼ 0: (A4)

[54] Proof. We start with the Taylor expansion of
aþ bxð Þr around x¼ 0:

ðaþ bx Þ r ¼
X1
i¼0

r
i

� �
ar�ibixi

¼ ar þ rar�1bxþ r r � 1ð Þ
2

ar�2b2x2 þO ar�3
� 	

;

where
r
i

� �
denotes the generalized binomial coefficient

r
n

� �
¼ r r � 1ð Þ � � � r � nþ 1ð Þ=n!. Applying this also to

the term aþ bxð Þ2r, it follows

Ia ¼
Z

a2r þ 2ra2r�1bxþ 2r 2r � 1ð Þ
2

a2r�2b2x2 þO a2r�3
� 	� �

p xð Þdx�
Z

ar þ rar�1bxþ r r � 1ð Þ
2

ar�2b2x2

��

þO ar�3
� 	�

p xð Þdx

�2

¼ 2r 2r � 1ð Þ
2

a2r�2b2m2 � r2a2r�2b2m2
1 � r r � 1ð Þ

a2r�2b2m2 þ
Z
O a2r�3
� 	

p xð Þdx

¼ m2 � m2
1

� 	
r2b2a2r�2 þ

Z
O a2r�3
� 	

p xð Þdx:

[55] Since the integrand is uniform convergent again,
swapping the integral and the limit leads to

lim
a!1

Ia

a2r�2
¼ lim

a!1
m2 � m2

1

� 	
r2b2

þ lim
a!1

Z
O a�1
� 	
|fflfflffl{zfflfflffl}
!0

p xð Þdx

¼ m2 � m2
1

� 	
r2b2;

which is constant and in general nonzero. In the special
case of r 2 N the Taylor expansions are finite and the result
can be obtained more easily. w

[56] Lemma 3. Given a probability density p with exist-
ing 2rth moment m2r ¼

R
x2rp xð Þdx and r; a; b 2 Rþ, for

the integral

Ib :¼
Z

aþ bxð Þ2rp xð Þdx�
Z

aþ bxð Þrp xð Þdx

� �2

(A5)

holds

lim
b!1

Ib

b2r
¼ const : 6¼ 0: (A6)

[57] Proof. Using the uniform convergence of the inte-
grands, it holds

lim
b!1

Ib

br
¼
Z

lim
b!1

a

b
þ x

� �2r
p xð Þdx

�
Z

lim
b!1

a

b
þ x

� �r
p xð Þdx

� �2

¼
Z

x2rp xð Þdx�
Z

xrp xð Þdx

� �2

;

which is m2r � m2
r and in general a nonzero constant. w

[58] Now we can proof the statements from the main text
more easily, starting with the expected damage as functions
of the location � and the scale �.

[59] Theorem 1. Assuming GEV-distributed maximum
water levels with density function p�;�;� and a power dam-
age function F xð Þ ¼ x� (0 < � < 1=�), for the expected an-
nual damage ED holds asymptotically (for large � and �,
respectively)

ED �ð Þ � �� and ED �ð Þ � ��: (A7)

[60] Proof. It holds

ED ¼
Z

F xð Þp�;�;� xð Þdx

¼
Z

�þ �xð Þ�p�;1;0dx:

Lemma 1 now provides ED �ð Þ=�� !�!1 1 and
ED �ð Þ=�� !�!1 m� , where m� denotes the �th moment of
the GEV-distributed water levels. Since � < 1=� is pre-
sumed, m� 6¼ 0 exists, which proves the lemma. w
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[61] Theorem 2. Assuming GEV-distributed maximum
water levels with density function p�;�;� and a power dam-
age function F xð Þ ¼ x� (0 < � < 0:5=�), for the standard
deviation STD D of the annual damage holds asymptoti-
cally (for large � and �, respectively)

STD D �ð Þ � ���1 and STD D �ð Þ � ��: (A8)

[62] Proof. For the variance holds

VarD ¼
Z

�þ �xð Þ2�p�;1;0dx

�
Z

�þ �xð Þ�p�;1;0dx

� �2

:

Lemmas 2 and 3 provide VarD �ð Þ=�2��2!�!1 const : 6¼ 0
and VarD �ð Þ=�2�!�!1 const : 6¼ 0, respectively. Conse-

quently, the same holds for STDD ¼ Var1=2
D . w

[63] Now, we provide results to proof the relations for
the dependencies on the protection height !.

[64] Lemma 4. Considering the probability density func-
tion p�;�;� of a Fr�echet distribution (i.e., � > 0) and n 2 N
(n < 1=�), it holds asymptotically (for large !)

In :¼
Z 1
!

xnp�;�;� xð Þdx � !n�1=�: (A9)

[65] Proof. We start with the integral

In ¼
1

�

Z 1
!

xn 1þ � x� �
�

� ��1=��1

� exp � 1þ � x� �
�

� ��1=�
� �

dx

and substitute z :¼ 1þ � x��
�

� 	�1=�
:

In ¼
Z 1þ�!���ð Þ�1=�

0

�

�
z�� � �

�
þ �

� �n

e�zdz

¼
Xn

i¼0

n

i

� �
�� �

�

� �n�i �

�

� �i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Kn;i

�
Z 1þ�!���ð Þ�1=�

0
z�i�e�z

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼lower incomplete Gamma function �

dz

¼
Xn

i¼0

Kn;i� 1� i�; 1þ � !� �
�

� ��1=�
� �

¼
Xn

i¼0

Kn;i|{z}
const :

1þ � !� �
�

� �i�1=�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
!!i�1=�

� exp � 1þ � !� �
�

� ��1=�
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!1

�
X1
k¼0

1þ � !���
� 	�k=�

1� i�ð Þ 2� i�ð Þ � . . . � 1þ k � i�ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!const :

�!n�1=�;

(A10)

for large !. The properties of the incomplete Gamma func-
tion can be found in Arfken and Weber [2005]. w

[66] Theorem 3 (x-relation, Fr�echet). Given Fr�echet-
distributed maximum water levels with density function
p�;�;� (� > 0), a power damage function F xð Þ ¼ x�

(� 2 N; � < 0:5=�) and an implemented protection mea-
sure of height !, for the annual damage holds asymptoti-
cally (for large !)

ED !ð Þ � !��1=� and STD D !ð Þ � !��0:5=�: (A11)

[67] Proof. Lemma 4 gives the relation for the expecta-
tion value ED (setting n¼ �) and VarD � E2

D � !2��1=�

(setting n¼ 2�). The expression for the standard deviation
follows immediately. w

[68] Please note, that the case � 62 N is not included in
the theorem. Nevertheless, its validity could be confirmed
by numerical calculations.

[69] Lemma 5. Considering the probability density func-
tion p�;�;� of a Weibull distribution (i.e., � < 0) and n 2 N, for
! close to the maximum possible sea level xmax :¼ �� �=�
holds

In :¼
Z R

!

xnp�;�;� xð Þdx � xmax � !ð Þ�1=�: (A12)

[70] Proof. We obtain equation (A10) similarly as in the
proof above. For ! close to xmax follows

In ¼ A10ð Þ

¼
Xn

i¼0

Kn;i|{z}
const :

1þ � !� �
�

� �i�1=�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
! xmax�!ð Þi�1=�

� exp � 1þ � !� �
�

� ��1=�
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!1

�
X1
k¼0

1

1� i�ð Þ 2� i�ð Þ � . . . � 1þ k � i�ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
const :

� xmax � !ð Þ�1=�:

(A13)

w

[71] Theorem 4 (!-relation, Weibull). Given Weibull-
distributed maximum water levels with density function
p�;�;� (� < 0), a power damage function F xð Þ ¼ x�

(� 2 N; � < 0:5=�) and an implemented protection mea-
sure of height ! close to the maximum possible sea level
xmax :¼ �� �=�, for the annual damage holds

ED !ð Þ � xmax � !ð Þ�1=� (A14)

and

STD D !ð Þ � xmax � !ð Þ�0:5=�: (A15)

[72] Proof. Lemma 5 gives the relation for the expecta-
tion value ED (setting n¼ �) and VarD � E2

D � !2��1=�

(setting n¼ 2�). The expression for the standard deviation
follows immediately. w

[73] As before, please note that the case � 62 N is not
included in the theorem. Nevertheless, its validity could be
confirmed by numerical calculations.
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[74] Lemma 6. Considering the probability density func-
tion p0;�;� of a Gumbel distribution and n 2 N, it holds
asymptotically (for large !)

In :¼
Z 1
!

xnp�;�;� xð Þdx � !ne�!=�: (A16)

[75] Proof. Starting with the substitution z :¼ x��
� we

obtain

In

!ne�!=�
¼ �n

!ne�!=�

Z 1
!��
�

Xn

i¼0

n

i

� �
�

�

� �n�i
zi

 !

� exp �zð Þ exp �exp �zð Þð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
�1

dz
(A17)

� �n

!ne�!=�

Z 1
!��
�

Xn

i¼0

n

i

� �
�

�

� �n�i

|fflfflffl{zfflfflffl}
�const :

zi

0
BB@

1
CCA � exp �zð Þdz

� const :
1

!ne�!=�

Xn

i¼0

Z 1
!��
�

ziexp �zð Þdz

¼ const :
1

!ne�!=�

Xn

i¼0

G nþ 1;
!� �
�

� �
;

(A18)

which is constant for !!1 with the upper incomplete
Gamma function G. equation (A17) can also be bounded
from below:

A17ð Þ 	 const :
1

!ne�!=�

Xn

i¼0

Z 1
!��
�

znexp �zð Þdz

¼ const :
1

!ne�!=�

Xn

i¼0

G nþ 1;
!� �
�

� �
;

which is again constant for !!1 and finishes the proof.w

[76] Theorem 5 (!-relation, Gumbel). Given Gumbel-
distributed maximum water levels with density function
p0;�;�, a power damage function F xð Þ ¼ x� (� > 0) and an
implemented protection measure of height !, for the annual
damage ED holds asymptotically (for large !)

ED !ð Þ � !�e�!=� and STD D !ð Þ � !�e�!= 2�ð Þ: (A19)

[77] Proof. The theorem follows immediately with
Lemma 6. w
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