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As supplementary materials we provide the following: In Section I we present tables with

details on our results using the CCA and results presented in previous papers to allow for

comparison between the different approaches. In Section II we study the stability of the

scaling found in the text under a change of scale in the cell size. In Section III we detail the

calculations to relate spatial correlations between the population growth and σ(S0) namely

the relation β = γ/4. In Section IV we describe the random surrogate dataset used to further

test our results. In Section V we further test the robustness of the CCA by proposing a

small variation in the algorithm.

I. CLUSTERS AT DIFFERENT SCALES AND COMPARISON WITH

METROPOLITAN STATISTICAL AREAS

In this section, Tables S1 and S2 allow for a detailed comparison of urban clusters obtained

with the CCA applied to the USA in 1990, and the populations of MSA from US Census

Bureau used in previous studies of population growth [1–3].

We can see that the MSA presented by Eeckhout (2004) typically correspond to our

clusters using cell sizes of 4km and 8km. For example, for the New York City region

Eeckhout’s data are well approximated by a cell size of 4km, but Los Angeles is better

approximated when using a cell size of 8km. On the other hand Dobkins-Ioannides (2000)

data are better described by cell sizes of 2km or 4km. For instance, Chicago is well described

by a cell size of 4km and Los Angeles is better described by a cell size of 2km.

An interesting remark is that the population of Los Angeles when using cell sizes of 2km,

4km and 8km does not vary as much as that for New York. This could be caused by the

fact that major cities in the northeast of USA are closer to each other than large cities in

the southwest, which may be attributed to land or geographical constraints.
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It is important relate the results of Table S2 with an ecological fallacy. As the cell size

is increased, the population of a cluster also increases, as expected, because the cluster now

covers a larger area. This is not a direct manifestation of an ecological fallacy which, would

appear if the statistical results (growth rate vs. S or standard deviation vs. S) gave different

results as the cell size increases. In Fig. 1 and Fig. 2 in the SI Section II, we observe that

the growth rate and standard deviation for the USA and GB follow the same form, except

for the case of the growth rate in the USA in which different cell sizes show deviations from

each other. The later may be an indicative of an ecological fallacy. In this case, it is not

obvious what cell size is the “correct” one. We consider this point (the possibility to choose

the cell size) to be a feature of the CCA, since one may appropriately pick the cell size

according to the specific problem one is studying.

Table S1: Top 10 largest MSA of the USA in 1990 from previous analysis of

population growth

Dobkins - Ioannides Eeckhout

MSA Population MSA Population

1 NYC NY206 9,372,000 NYC-North NJ-Long Is., NY-NJ-CT-PA 19,549,649

2 Los Angeles CA172 8,863,000 Los Angeles-Riverside-Orange County, CA 14,531,529

3 Chicago IL59 7,333,000 Chicago-Gary-Kenosha, IL-IN-WI 8,239,820

4 Philadelphia PA228 4,857,000 Washington-Baltimore, DC-MD-VA-WV 6,727,050

5 Detroit MI80 4,382,000 San Francisco-Oakland-San Jose, CA 6,253,311

6 Washington DC312 3,924,000 Philadelphia-Wilmington-Atlantic City 5,892,937
PA-NJ-DE-MD

7 San Francisco CA266 3,687,000 Boston-Worcester-Lawrence, MA-NH-ME-CT 5,455,403

8 Houston TX129 3,494,000 Detroit-Ann Arbor-Flint, MI 5,187,171

9 Atlanta GA19 2,834,000 Dallas-Fort Worth, TX 4,037,282

10 Boston MA39 2,800,000 Houston-Galveston-Brazoria, TX 3,731,131

2



Table S2: Top 10 largest clusters of the USA in 1990 from our analysis for

different cell sizes. The city names are the major cities that belong to the clusters and

were picked to show the areal extension of the cluster.

Cell = 1km Cell = 2km Cell = 4km Cell = 8km

Cluster Population Cluster Population Cluster Population Cluster Population

1 NYC 7,012,989 NYC-Long Is. 12,511,237 NYC-Long Is. 17,064,816 NYC-Long Is. 41,817,858
Newark N. NJ-Newark North NJ

Jersey City Jersey City Philadelphia
D.C.-Boston

2 Chicago 2,312,783 Los Angeles 9,582,507 Los Angeles 10,878,034 Los Angeles 13,304,233
Long Beach Long Beach San Clemente

Pomona Riverside

3 Los Angeles 1,411,791 Chicago 4,836,529 Chicago 7,230,404 Chicago 9,288,345
Rockford Gary Gary

Rockford Rockford
Milwaukee

4 Philadelphia 1,282,834 Philadelphia 3,151,704 Washington 5,316,890 San Francisco 5,736,479
Wilmington Baltimore Santa Cruz

Springfield Brentwood

5 Boston 759,024 Detroit 2,906,453 Philadelphia 4,935,734 Detroit 4,442,723
Trenton Ann Arbor

Wilmington Monroe
Sarnia

6 Newark 581,048 San Francisco 2,601,639 San Francisco 4,766,960 Miami 4,000,432
San Jose San Jose Port St. Lucie

Concord

7 San Francisco 507,300 Washington 2,059,421 Detroit 3,722,778 Dallas 3,536,186
Alexandria Waterford Fort Worth
Bethesda Canton

8 Washington 504,068 Phoenix 1,556,077 Miami 3,719,773 Houston 3,425,647
W. Palm Beach

9 Jersey City 438,591 Boston 1,498,208 Dallas 3,134,233 Cleveland 3,233,341
Lowell Fort Worth Canton
Quincy

10 Baltimore 437,413 Miami 1,465,490 Boston 3,064,925 Pittsburgh 3,214,661
Brockton Youngstown
Nashua Morgantown
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FIG. 1: Sensitivity of the results under coarse-graining of the data for GB. (A) Average growth

rate and (B) standard deviation for GB using the clustering algorithm for different cell size. The

dashed line represents the OLS regression estimate for the exponents (A) αGB = 0.17 and (B)

βGB = 0.27 obtained in the main text. For clarity we do not show the confidence bands.

II. SCALING UNDER COARSE-GRAINING

In this section we test the sensitivity of our results to a coarse-graining of the data. We

analyze the average growth rate 〈r(S0)〉 and the standard deviation σ(S0) for GB and the

USA by coarse-graining the data sets at different levels.

In Fig. 1A we observe that although the results are not identical for all coarse-grainings,

they are statistically similar, showing a slight decay in the growth rate. Moreover, we see

that cities of size S0 ≈ 103 and S0 ≈ 106 still exhibit a tendency to have negative growth

rates for all levels of coarse-graining, as explained in the main text. In the case of the USA

(Fig. 2A) there is a crossover to a flat behavior at a cell size of 8000m, although at this scale

all the northeast USA becomes a large cluster of 41 million inhabitants. On the other hand,

Figs. 1B, 2B show that the scaling of Eq. (3) in the main text, σ(S0) ∼ S−β
0 , still holds when

using the coarse-grained datasets on both GB and the USA.

III. CORRELATIONS

In this section we elaborate on the calculations leading to the relation between Gibrat’s

law and the spatial correlations in the cell population. We first show that when the pop-
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FIG. 2: Study of results under coarse-graining of the data for the USA. (A) Average growth rate

and (B) standard deviation for the USA using the clustering algorithm for different cell size. The

dashed line represents the OLS regression estimate for the exponents (A) αUSA = 0.28 and (B)

βUSA = 0.20 obtained in the main text. For clarity we do not show the confidence bands.

ulation cells are randomly shuffled (destroying any spatial correlations between the growth

rates of the cells), the standard deviation of the growth rate becomes σ(S0) ∼ S−βrand

0 , where

βrand = 1/2 [4]. Then, we show that long-range spatial correlations in the population of the

cells leads to the relation β = γ/4 as stated at the end of Section II in the main text.

Assuming that the population growth rate is small (r ≪ 1), we can write R = er ≈ 1+ r.

Replacing R = 1 + r in Eq. (1) in the main text we obtain

S1 = S0 + S0r. (1)

We define the standard deviation of the populations S1 as σ1, which is a function of S0:

σ1(S0) =
√

〈S2
1〉 − 〈S1〉2. (2)

This quantity is easier to relate to the spatial correlations of the cells than the standard

deviation σ(S0) of the growth rates r. Then, since 〈S1〉 = S0 + S0〈r〉 and 〈S2
1〉 = S2

0 +

2S2
0〈r〉 + S2

0〈r
2〉, we obtain,

σ1(S0) ∼ S0σ(S0), (3)

where σ(S0) =
√

〈r2〉 − 〈r〉2 as defined in the main text. Therefore, using Eq. (3) in the
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main text,

σ1(S0) ∼ S1−β
0 . (4)

As stated in the main text, the total population of a cluster at time t0 is the sum of the

populations of each cell, S0 =
∑Ni

j=1 n
(i)
j , where Ni is the number of cells in cluster i. The

population of a cluster at time t1 can be written as

S1 = S0 +

Ni
∑

j=1

δj, (5)

where δj is the increment in the population of cell j from time t0 to t1 (notice that δj can

be negative). Therefore, the standard deviation σ1(S0) is

(

σ1(S0)
)2

=

Ni
∑

j,k

〈δjδk〉 − 〈

Ni
∑

j

δj〉
2 =

Ni
∑

j,k

〈(δj − δ̄)(δk − δ̄)〉. (6)

After the process of randomization explained in Section II main text, the correlations

between the increment of population in each cell are destroyed. Thus,

〈(δj − δ̄)(δk − δ̄)〉 = ∆2δjk, (7)

where ∆2 = δ̄2− δ̄2. Replacing in Eq. (6) and since 〈n〉 = (1/Ni)
∑Ni

j nj = S0/Ni, we obtain

(

σ1(S0)
)2

= Ni∆
2 ∼ S0. (8)

Comparing with Eq. (4) we obtain βrand = 1/2 for this uncorrelated case.

Let us assume that the correlation of the population increments δj , decays as a power-law

of the distance between cells indicating long-range scale-free correlations. Thus, asymptoti-

cally

〈(δj − δ̄)(δk − δ̄)〉 ∼
∆2

|~xj − ~xk|γ
, (9)

where ~xj denotes the position of the cell j and γ is the correlation exponent (for |~xj−~xk| → 0,

the correlations 〈(δj− δ̄)(δk− δ̄)〉 tend to a constant). For large clusters, we can approximate

the double sum in Eq. (6) by an integral. Then, assuming that the shape of the clusters can

be approximated by disks of radius rc, for γ < 2 we obtain

(σ1(S0))
2 =

Ni
∑

j,k

∆2

|~xj − ~xk|γ
→ ∆2 Ni

a2

∫ rc rdrdθ

rγ
≈

∆2

(2 − γ)

Ni

a2
r−γ+2
c , (10)
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where a2 is the area of each cell and rc the radius of the cluster. Since rc ∼ Nia
2, we finally

obtain,
(

σ1(S0)
)2

∼ N
2− γ

2

i . (11)

Using S0 = Ni〈n〉 and Eq. (4) we arrive at,

β =
γ

4
. (12)

Equation (12) shows that Gibrat’s Law is recovered when the correlation of the population

increments is a constant, independent from the positions of the cells; that is when all the

populations cells are increased equally. In other words, if γ = 0, the standard deviation of

the populations growth rates has no dependence on the population size (β = 0), as stated by

Gibrat’s law. The random case is obtained for γ = d, where d = 2 is the dimensionality of the

substrate. In this case d = 2 and βrand = 1/2. For γ > 2, the correlations become irrelevant

and we still find the uncorrelated case βrand = 1/2. For intermediate values 0 < γ < 2 we

obtain 0 < β = γ/4 < 1/2.

IV. RANDOM SURROGATE DATASET

In this section we elaborate on the randomization procedure used to understand the role

of correlations in population growth.

Figure 4C in the main text shows the standard deviation σ(S0) when the population

of each cluster is randomized, breaking any spatial correlation in population growth. For

clusters with a large population, σ(S0) follows a power-law with exponent βrand = 1/2,

and for small S0, σ(S0) presents deviations from the power-law function as seen in Fig. 4C

with smaller standard deviation than the prediction of the random case. This deviation is

caused by the fact that the population of a cluster is bound to be positive: a cluster with a

small population S0 cannot decrease its population by a large number, since it would lead

to negative values of S1. This produces an upper bound in fluctuations of the growth rate

for small S0 and results in smaller values of σ(S0) than expected (below the scaling with

exponent βrand = 1/2).

To support this argument, we carry out simulations using the clusters of GB, where the

population nj(t0) of each cell j is replaced with random numbers following an exponential

distribution with probability P (nj) ∼ e−nj/n0 . The decay-constant, n0 = 150, is extracted
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from the data of GB to mimic the original distribution. This is done through a direct measure

of P (nj) from the GB dataset and fitting the data using OLS regression analysis. We obtain

the population nj(t1) = nj(t0) + δj of cell j at time t1 by picking random numbers for the

population increments δj following a uniform distribution in the range −q∗150 < δi < q∗150.

Here q determines the variance of the increments. Since the population cannot be negative

we impose the additional condition nj(t1) ≥ 0. Figure 3 shows the results of the standard

deviation σ(S0) for four different q-values for this uncorrelated model. We find that the tail

of σ(S0) reproduces the uncorrelated exponent βrand = 1/2. For small S0 we find that the

standard deviation levels off to an approximately constant value as in the surrogate data of

Fig 4C. The crossover from an approximately constant σ(S0) to a power-law moves to smaller

values of the population S0 as the standard deviation in the δj is smaller (smaller value of q).

Such behavior can be understood since the condition n
(i)
j (t1) ≥ 0 imposes a lower “wall” in

the random walk specified by n
(i)
j (t1) = n

(i)
j (t0) + δj . As the initial population gets smaller,

the walker “feels” the presence of the wall and the fluctuations decrease accordingly, thus

explaining the deviations from the power-law with exponent βrand = 1/2 for small population

values. Therefore, as the value of q decreases, the small population plateau disappears as

observed in Fig. 3.

V. A VARIATION OF THE CCA

In this section we study a variation of the CCA. In the main text we stop growing a cluster

when the population of all boundary cells have unpopulated, that is, have population exactly

0. In other words, clusters are composed by cell with population strictly greater than 0. It

is important to analyze whether this stopping criteria can be relaxed to including cell which

have a population larger that a given threshold. In Fig. 4A and Fig. 4B we show the results

for the population growth rate and standard deviation, respectively, in GB when the cell

size is 2.2km-by-2.2km (as in the main text) but including cells with a population strictly

larger than 5 and 20.

Although for small population clusters we observe a slight variation in the growth rate

and in the standard deviation, the results show that the thresholds do not influence the

global statistics when compared to the plots in the main text.
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FIG. 3: Standard deviation σ(S0) for the random data set as explained in the SI Section IV. The

results for σ(S0) are rescaled to collapse the power-law tails with exponent βrand = 1/2 and to

emphasize the deviations from this function for small values of S0. The larger the parameter q, the

larger the deviations from the power-law at lower S0. In other words, the crossover to power-law

tail appears at larger S0 as q increases.

A B

FIG. 4: Sensitivity of the results under a change in the stopping criteria in the CCA (A) Average

growth rate for GB with a population threshold of 5 (green line) and 20 (black dashed line) and

(B) standard deviation for GB with a population threshold of 5 (green line) and 20 (black dashed

line). For clarity we do not show the confidence bands.
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