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a b s t r a c t

We use the Detrended Fluctuation Analysis (DFA) to quantify underlying trends in long-
term correlated records. Our approach is based on the fact that different orders of DFA are
affected differently by trends. For a given instrumental record of length N , we compare
the fluctuation exponent α0 of DFA0 where trends are not being eliminated, with the
fluctuation exponent α2 of DFA2 where possible linear trends in the instrumental record
are being eliminated. From this we deduce numerically the probability density p(A) that
in the considered long-term correlated record, a linear trend with a slope between A and
A + dA occurs. Without loss of generality we focus on Gaussian distributed data. As an
example, we apply our analysis to several long temperature records (Melbourne, Oxford,
Prague, Pusan, Uppsala, and Vienna), where we discuss the trends within the last 90 years,
which may originate from both, urban and global warming.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Long-term correlations have been first observed by H.E. Hurst, who found ‘‘long-range statistical dependencies’’ [1] in
river-runoff records, and mathematically described by Mandelbrot [2,3]. In the last decades it has become clear that long-
term correlations are abundant in nature, characterizing, for example, temperature records [4–12], hydrological records [2,
3,13,14], physiological records [15,16], economic records (for reviews, see, e.g. Refs. [17,18]) and even records of human
activity [19,20]. In long-term correlated records, large events well above the average are more likely to be followed by large
events, and small events well below the average by small events. This persistence occurs on all time scales. For example, a
week where the temperature is high, is more likely to be followed by a warm week than by a cold week, a warm month is
more likely followed by a warm month than by a cold one, and the same holds on annual and decadal scales, and probably
even on centennial scales [12,21]. This persistence on all scales is characterized by an autocorrelation function that decays
in time by a power law, C(s) ∼ s−γ with an exponent γ between 0 and 1. One of the consequences, of the pronounced
mountain–valley-structure is the clustering of extreme events in time [22,23] where periods of short return times are
followed by periods of large return times.
Since large mountain and valley epochs may look like positive and negative trends (see Fig. 1), it is generally difficult

to distinguish between long-term correlated and deterministic trendy behavior. One of the major challenges here is the
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Fig. 1. Mountain–valley-structure of long-term correlated records. (a, b) an artificial example with fluctuation exponent α = 0.85 (γ = 0.3) (c, d)
randomly shuffled values, destroying any correlations. In order to emphasize the long-term behavior, the thick lines in (a, c) represent down-sampled
values in windows of size 30. The straight lines in (b, d) are least square fits to the records using different periods (red: total; green: starting from 1000).
One can see, that due to the mountain–valley-structure of long-term correlated records steeper slopes are more likely to occur. The record in (a, b) was
created using Fourier filtering, see e.g. Ref. [24]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

detection- and attribution problem in climatology. The question is, how much of the recent increase in the temperature of
the earth’s atmosphere and hydrosphere (which are long-term correlated) can be attributed to natural fluctuations, and how
much is of anthropogenic origin [25,21]. Currently, there exist several techniques (like the Detrended Fluctuation Analysis
or the Wavelet Technique) that are able to systematically eliminate trends in the presence of long-term correlations, but
there is no conclusive method available that allows to eliminate the fluctuations and then obtain the trend. In short-term
correlated records with a finite correlation time s×, the correlations can be eliminated by down-sampling, i.e. averaging
them over timewindows that are considerably larger than the correlation time. But since in long-term correlated sequences
the correlation time is, in principle, infinite, this kind of filtering cannot be applied.
Here we present a method that is based on an extension of the Detrended Fluctuation Analysis (DFA) [26] as suggested

in Ref. [16] (see also Refs. [24,27,28]). Our approach is based on the fact that different orders of DFA are affected differently
by trends, which we use to obtain (for a given long-term correlated record of length N) the probability density p(A) that a
linear trend with a slope between A and A + dA occurs. As an example, we apply our analysis to several long temperature
records (Melbourne, Oxford, Prague, Pusan, Uppsala, and Vienna).
The paper is organized as follows. In Section 2 we briefly describe long-term correlations and the Detrended Fluctuation

Analysis. In Section 3wedescribe our trend estimationmethod,whichwe then apply in Section 4 to the temperature records.
In Section 5 we summarize the results and draw our conclusions.

2. Long-term correlations and trends

2.1. Elimination of seasonal trends

We consider a record (Ti) of i = 1, . . . ,N equidistant measurements. Inmost hydro-climate applications, the index iwill
correspond to days or years.
We assume that the record can be approximated well by a superposition of 3 components,

Ti = xi + yi + zi, (1)

where xi is the (correlated) noise component (〈x〉 = 0), yi the trend component, and zi is the periodic component.
To eliminate the periodic component, one usually concentrates on the departures

wi := Ti − 〈T 〉i mod λ (2)

from the periodic mean, with λ being the period. In the case of daily temperatures, λ = 365 and the values 〈T 〉i mod λ are
simply the mean temperatures for each calendar date, e.g. 2nd of March, obtained by averaging over all years in the record.
Thus, in the following we focus on the recordwi,wi ' xi+ yi, that only contains a noise and trend component. Without loss
of generality we will assume that thewi have zero mean.
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2.2. Detrended fluctuation analysis (DFA)

The Detrended Fluctuation Analysis (DFA) is a well-established method for determining the scaling of long-term
correlations in the presence of trendswithout knowing their origin and shape [26,29,16,24,30]. Long-termcorrelated records
are characterized by an autocorrelation function

C(s) =
〈xixi+s〉
〈x2〉

=
1

(N − s)〈x2〉

N−s∑
i=1

xixi+s (3)

that declines algebraically with the time lag s,

C(s) ∼ s−γ . (4)
The correlation exponent γ is between 0 and 1, such that the mean correlation time s =

∫
∞

0 C(s)ds diverges. For γ > 1, the
data are only short-term correlated, since s remains finite. In general, the direct calculation of C(s) is severely affected by
finite size effects (shortness of the record) and by the presence of trends.
The DFA depends less on finite size effects and can eliminate systematically polynomial trends. In DFA, one considers the

cumulative sum (‘‘profile’’) of the wi and studies its fluctuations around polynomial best fits in time windows of size s. If
we choose for the polynomial a constant (0-order) polynomial, we call the procedure DFA0. In general, if we choose an nth
order polynomial, we call it DFAn. In this paper, we will focus exclusively on DFA0 and DFA2.
In general, the DFA procedure consists of three steps:

(1) Determine the profile:

Y (i) =
i∑
k=1

wk, (5)

of the (deseasoned) record (wi) of length N and cut it into Ns = int(N/s) non-overlapping segments of equal length s
(an illustrative Figure can be found, e.g., in Ref. [24]).

(2) In each of these segments ν, determine the local polynomial trend (of given order n) by a least-square fit and determine
the variance F 2s (ν) around it.

(3) Average over all segments and take the square root to obtain the DFAn fluctuation function:

F (n)(s) =

[
1
Ns

Ns∑
ν=1

F 2s (ν)

]1/2
. (6)

For different detrending orders n one obtains different fluctuation functions F (n)(s). For long-term correlated data without
deterministic trend, the F (n)(s) all scale the same,

F (n)(s) ∼ sαn (7)
with

αn =

{
1− γ /2 for 0 < γ ≤ 1
1/2 for γ > 1. (8)

By definition, DFAn eliminates trends of order n in the profile which represent trends of order n − 1 in the original
record. Thus, in the presence of a linear trend in the original data, DFA0 and DFA1 are influenced by the trend and do not
scale according to Eq. (7), while DFA2, DFA3, etc. do so. It has been suggested in Ref. [24] that this feature can be utilized for a
trend detection in the presence of long-term correlations. In this paper we follow this path. For simplicity we focus on linear
trends in the original data. In this case, DFA0 asymptotically scales as F (0)(s) ∼ s, i.e., α0 → 1, while DFA2 removes the
trend and scales as F (2)(s) ∼ sα , i.e., α2 ' α. For finite records and small trends, the asymptotic behavior of DFA0 cannot be
observed, and its fluctuation function scales effectively as F (0)(s) ∼ sα0 with 1 ≥ α0. The discrepancy between the effective
exponent α0 and the exponent α2 is our main indicator for the trend. But when evaluating the trend this way one has to
bear in mind that due to the squares in Eq. (6), increasing and decreasing trends lead to the same effective exponent α0.
We like to note that for stationary mono-fractal time series [31], α1 corresponds to the classical Hurst exponent H

determined by Rescaled Range Analysis [1,32]. DFA0 is equivalent to the simplest Fluctuation Analysis (FA) [33,6] and
identical to the aggregated standard deviation method (ASD), see e.g. Ref. [34]. Finally, when applying standard spectral
analysis techniques to a long-term correlated record without a trend, the power spectrum S(f ) scales with frequency f as
S(f ) ∼ f −β , where β is related to the fluctuation exponent α by β = 2α − 1, see, e.g., Refs. [35–37].

3. Trend estimation with Detrended Fluctuation Analysis

In the following, we describe a method to evaluate a deterministic trend in a given record that is superimposed on long-
term correlated fluctuations characterized by the fluctuation exponent α. We assume that the trend is weak and can be
approximated by a linear function yi = A(i− N

2 ).
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Fig. 2. Considered temperature records plotted in annual resolution. (a) Melbourne (AUS, 1859–1994), (b) Oxford (GBR, 1853–1997), (c) Prague (CZE,
1775–1992), (d) Pusan (KOR, 1904–1994, 90 years and 8 months), (e) Uppsala (SWE, 1722–2004 [38,39]), and (f) Vienna (AUT, 1873–1997). The straight
lines are least square fits to the last 90 years of the records.

In our approach, we useMonte-Carlo simulations and generate a large number of records (with given N , α, and A values).
We request that each record follows, in the considered time frame, the same (upward or downward) tendency as the
measured record, described by increasing or decreasing regression lines (positive or negative sign). In the temperature
records considered here, the regression lines are always increasing, see Fig. 2. The question we ask is, what is the probability
density that the slope of the linear trend is between A and A + dA. To answer this question numerically, we perform the
following steps:

(1) Apply DFA0 and DFA2 to the considered record of length N and determine the values of the exponents α∗0 and α
∗

2 by
power-law fits from the fluctuation functions.

(2) Use the Fourier filtering method (see e.g. Ref. [24]), where the same fluctuation exponent α = α∗2 as the considered
record is imposed, to create a large number of synthetic records with the same length N .

(3) Apply DFA2 to the synthetic records. Keep only those K records where the exponent α2 is between α∗2 − δ and α
∗

2 + δ.
Reject all others configurations.

(4) Apply DFA0 and determine, for each of the K remaining records, the DFA0 exponent α0.
(5) Count the number Rα∗0 of configurations where
• α0 is between α∗0 − δ and α

∗

0 + δ, and
• the slope of a linear regression has the same sign as the considered real record.

(6) Add a linear trend with slope A to the accepted K records [see step (3)] and repeat the steps (4–6).

By varying A, we obtain the histogram Rα∗0 (A), and by normalizing it, we arrive at an estimate for the final probability
pδ(A) that the considered record has a trend with slopes between A and A+ dA. Accordingly, by plotting pδ(A) against A, we
can estimate the trend that most likely leads to the DFA0- and DFA2-slopes α∗0 and α

∗

2 characterizing the record. Since the
maximum slope of DFA0 is 1 [24], this method only works sufficiently well if the long-term correlations are not too strong
(α∗2 has to bewell below 1). If α

∗

2 is close to 1, no difference between DFA0 and DFA2 is found (α0 ≈ α2), evenwhen a (linear)
trend is added. In this case we suggest to use the comparison of α1 and α2, which on the other hand requires rather stronger
trends.

4. Application to temperature records

Fig. 2 shows (in annual resolution) the temperature records that we consider here. The figure also shows least square
fits for the last 90 years (green), the period to which we restrict our study. It is the length of the shortest considered record
(Pusan). Again, the question is how much of the increase in Fig. 2 can be attributed to the natural fluctuations (long-term
correlations) and how much is the consequence of a trend in the sense of a deterministic change.
In order to reduce the influence of short-term correlations in the temperature records, that basically reflect the short-

term persistence of the weather [9], we do not use daily resolution, but aggregate the records by averaging the data in
non-overlapping windows of 12 days. Accordingly, the resulting aggregated records have length N that is 12 times shorter
than the daily records.
In our analysis, we follow the steps described above (Section 3). First we apply DFA (here DFA0, DFA1, DFA2 and DFA3)

to the records. The corresponding fluctuation functions are depicted in Fig. 3. The figure shows that DFA2 and DFA3 have
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Fig. 3. Detrended Fluctuation Analysis of the considered temperature records shown in Fig. 2 for the last available 90 years. The panels exhibit the
fluctuation functions obtained with DFA0–DFA3 (from top to bottom) plotted against the time scale. The thick solid lines represent the exponents (a)
Melbourne, α∗0 = 0.56, α

∗

2 = 0.63; (b) Oxford, α
∗

0 = 0.67, α
∗

2 = 0.64; (c) Prague, α
∗

0 = 0.72, α
∗

2 = 0.61; (d) Pusan α
∗

0 = 0.74, α
∗

2 = 0.62; (e) Uppsala
α∗0 = 0.64, α

∗

2 = 0.63; and (f) Vienna α
∗

0 = 0.75, α
∗

2 = 0.62 on the scales 50 < s < 700. The dashed line at the bottom of each panel indicates the
uncorrelated case of α = 0.5.

Fig. 4. Normalized histograms of the fluctuation exponents α2 and α0 determined from artificial records. Using Fourier filtering (see e.g. Ref. [24])
104 records of length N = 2756 with imposed exponent α = 0.62 were created. Panel (a, ∗, black) shows the exponents obtained by DFA2. After removing
those sequences where α2 is not in the range 0.62 − δ < α2 < 0.62 + δ [shaded area in (a)], a linear trend of slope A is added: (b) A = 0σ/N , (c)
A = 0.5σ/N , and (d) A = 1.0σ/N . The panels show the exponents α0 (b–d, ×, blue) obtained by DFA0. The blue shaded areas in (b–d) represent the
number of exponents α0 found in 0.64−δ < α0 < 0.64+δ. The solid lines, given by the corresponding normal distributions, are included for visualization
only. The third condition (see step 5 in Section 3) requires increasing linear regressions (not shown). All exponents were determined in the time window
50 < s < 700. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the same exponent (which indicates that trends have been removed completely by DFA2 in all 6 cases), while the exponent
obtained by DFA0 is slightly larger (except for Melbourne).
Next, in step 2, we generate a large number of long-term correlated recordswith the sameβ-value by the Fourier filtering

method. In step 3 we keep only those configurations that have concordant α2-values. For the Pusan temperature record, for
example, α2 must be between 0.62− δ and 0.62+ δ. Fig. 4(a) shows the histogram of the fluctuation exponents determined
with DFA2 for the synthetic sequences (N = 2756, imposed α = 0.62). As expected, the histogram has a maximum at
α∗2 = 0.62. The shaded region in Fig. 4(a) represents the K approved configurations. In step 4, we then determine the
DFA0-exponent α0 for these remaining records, the distribution (for Pusan) is shown in Fig. 4(b). The figure depicts that
the maximum occurs around α0 = 0.55 and thus is shifted slightly towards smaller values. This is an artefact of DFA0,
which shows that due to considerable finite size effects (which are less pronounced for higher order DFA) the fluctuation
exponents are underestimated and, in addition, spread considerably. Accordingly, contrary to the expectations, already the
case α∗0 ' α

∗

2 indicates some trend in a record (for an explanation of this effect, see Ref. [40]).
In the following steps 5 and 6, we add linear trends with slope A, count the number of configurations Rα∗0 (A) that (i) have

exponentsα0 betweenα∗0−δ andα
∗

0+δ and (ii) have an increasing regression line. This condition is necessary to distinguish
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Fig. 5. Probability pδ(A) that the slope of the trend is between A and A + dA as calculated comparing the DFA2 and DFA0-exponents obtained from the
Melbourne-record and from synthetic records according to Section 3. The results are shown for different values of the parameter δ = 0.01 . . . 0.05. To
transform the trend-values from the units σ/N to ◦C/100 years we consider the standard deviations of the instrumental records and of the artificial records
with trends. The figure is based on 104 sequences with corresponding N and imposed α. The dashed vertical line indicates A = 0.

Fig. 6. Probability p(A) that the slope of the trend is between A and A+dA as calculated comparing theDFA2 andDFA0-exponents. In the same arrangement
as Fig. 3: (a) Melbourne, (b) Oxford, (c) Prague, (d) Pusan, (e) Uppsala, and (f) Vienna. To transform the trend-values from the units σ/N to ◦C/100 years we
consider the standard deviations of the instrumental records and of the artificial records with trends. For each panel 104 sequences with corresponding N
and imposed α have been generated. The dashed vertical lines indicate A = 0. As explained in the text, we restrict to δ = 0.02.

between positive and negative A-values in Rα∗0 (A)—without it onewould obtain Rα∗0 (|A|). For Pusan (α
∗

0 = 0.74) the number
of configurations Rα∗0 (A) is indicated by the shaded areas in Fig. 4(b–d), for three trend strengths A. Rα∗0 (A) is proportional
to the probability pδ(A) that the slope of the trend is between A and A + dA. The proportionality constant is determined
by the normalization condition. With increasing underlying trend [see Fig. 4(c,d)], the distribution of the DFA0-exponents
is shifted towards larger values and becomes narrower. Fig. 5 exhibits pδ(A) for the temperature record from Melbourne
with δ ranging from 0.01 to 0.05. The data collapse in the figure shows that the outcome is practically independent of the
tolerance δ. From now on we use δ = 0.02 and skip this index in pδ(A).
The resulting p(A)-curves for the six temperature records are depicted in Fig. 6. The most likely trend appears at the

maximum of p(A). By definition, P(A) =
∫
∞

A p(A)dA is the probability that the trend is larger than A. This probability is
shown in Fig. 7. It also shows those A-values where P(A) = 0.975 or 0.025, which indicate the confidence levels A0.975 and
A0.025. Between these levels, 95 % of all trends are found. Accordingly, the chance to have smaller or larger trends is 5 %.
As one can see in Fig. 6, the maxima at Atyp of the p(A) curves occur always at positive A-values, which is due to the

required increasing tendency (step 5 in Section 3). In Melbourne and Oxford, the trends are not significant since Atyp is
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Fig. 7. Probability P(A) that the slope of the trend is larger or equal to A. The values have been obtained integrating the curves from Fig. 6. In the same
arrangement as Fig. 3: (a) Melbourne, (b) Oxford, (c) Prague, (d) Pusan, (e) Uppsala, and (f) Vienna. The arrows and dotted lines in (d) illustrate how the
A0.975 and A0.025-values are determined.

Table 1
Overview of the results obtained with the proposed method and comparison with least square fits. For the studied examples (compare Fig. 2) we list the
results for the last 90 years. The left part shows the results of the approach we propose and the right part shows the results of the least square fits. Atyp is
themost likely trend, while A0.975 and A0.025 are the confidence levels including 95%. In the case of the DFA-based technique, they have been extracted from
the p(A)- and P(A)-values (Figs. 6 and 7), while in the case of the least square fits, a bootstrapping technique (104 random samples with replacement) [41]
has been used. All values are in units ◦C/100 years.

Proposed method Linear regression
A0.975 Atyp A0.025 A0.975 Atyp A0.025

Melbourne −0.31 0.33 1.07 0.39 0.64 0.91
Oxford −0.34 0.34 1.12 0.40 0.67 0.96
Prague −0.44 0.60 1.79 0.97 1.31 1.67
Pusan 0.31 0.95 1.59 1.08 1.30 1.53
Uppsala −0.82 0.76 2.41 0.75 1.15 1.53
Vienna 0.61 1.60 2.58 1.34 1.70 2.05

lower than the width ∆A of p(A), while for Pusan and Vienna Atyp is considerably larger than ∆A. Table 1 summarizes the
results of the proposed trend-detectionmethod and compares themwith the results from the conventional linear regression
analysis where long-term correlations have not been taken explicitly into account. In the linear regression analysis, one
applies least square fitting to obtain the regression lines. The most likely trends Atyp are simply given by the least square fit.
The 2.5%-quantiles (95% confidence interval) were calculated using a bootstrapping technique (104 random samples with
replacement) [41].
The table shows that in all cases the conventional regression analysis yields larger trends Atyp with confidence intervals

that are considerably smaller than in the method we propose, exaggerating the trend and indicating a seemingly smaller
uncertainty. Both features, however, are probably caused by the fact that the regression analysis is not able to take into
account the long-term correlations in a proper way.
Wewould like to note, thatwe obtain similar results, whenweuse conventional FluctuationAnalysis (FA) [33,6] replacing

DFA0, or whenmonthly resolution instead of 12 day-resolution is used. In contrast to the conventional method, the method
proposed here gives an estimate on how much systematic change is included in the records, which is not due to long-term
correlations. More work needs to be done to understand other types of trends.

5. Summary and outlook

In summary, we have proposed a DFA-based technique to estimate trends in records, where also long-term correlations
are present. The method is based on the comparison of the fluctuation functions in DFA0 (which reflects trends) and DFA2
(which systematically removes linear trends). By applying DFA0 and DFA2 to a large number of synthetic records with well
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defined correlation properties and trends, we were able to estimate the probability that a given long-term correlated record
contains a certain trend.
Our approach differs from the one that has been followed in Ref. [42], where the scaling of fit-coefficients of the DFA-

regression (which normally are not being considered) has been analyzed. We have used an different approach to identify
possible trends in six observational temperature records. We found that the conventional regression method which does
not take into account long-term correlations, significantly overestimates the trend, in 3 of 6 cases by about 50 %, in 2 cases
by 40 %, and in one case (Vienna) by 5 %. More work with more stations has to be done to confirm this picture. We plan
to extend this work also to river flows and precipitation, where the data strongly deviate from Gaussians and non-linear
long-term correlations also exist.
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