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In order to estimate future damage caused by natural disasters, it is desirable to know
the damage caused by single events. So called damage functions provide – for a natural
disaster of certain magnitude – a specific damage value. However, in general, the func-
tional form of such damage functions is unknown. We study thedistributions of recorded
damage values and deduce which damage functions lead to suchdistributions when the
natural disasters obey Generalized Extreme Value statistics. We find broad damage distri-
butions and investigate two possible functional forms to characterize the data. In the case
of Gumbel distributed extreme events, a power-law distribution density with an exponent
close to 2 (Zipf’s law) implies an exponential damage function. Stretched exponential
distribution densities imply power-law damage functions.In the case of Weibull (Fréchet)
distributed extreme events we find correspondingly steeper (less steep) damage functions.

Motivation

One of the consequences which are expected to come along with global warm-
ing is an increased number of climate related disasters. The question raised by
governments or insurances is, which costs certain regions, countries,or even the
globalized economy are facing.
Natural disasters, such as floods or storms, represent extreme events. Independent
of the problem on how to project future extreme events, one is interested inwhich
damage can typically be expected from an extreme event of certain magnitude.
One approach to tackle this question is to separate the statistics of extreme events
from the damage caused by them. The former can be obtained from measure-
ments, such as water level records, but the latter needs to be estimated bysome
empirical studies or by theoretical considerations.
Accordingly, so called damage functions provide a monetary value as a function
of the magnitude of an event, such as the maximum level of a flood. One distin-
guishes damage functions on a microscopic scale from those on a macroscopic
scale. The former describes the typical costs of damages to single assets, such
as residential buildings, and the latter describes costs of damages to larger areas,
such as a city. This macroscopic damage function represents a composition of
information on asset values, their location, and their vulnerability, see e.g. [1]. If
not specified we refer to macroscopic damage functions, in what follows.
The question we address is, which functional form a damage function must fol-
low so that the distribution of extreme events transforms to the distribution of
damages. Relating these two distributions we obtain macroscopic damage func-
tions. Therefore we analyze flood data assembled by CRED[2] and find broad
damage distributions. In order to characterize them, we elaborate two functional
forms.

Extreme Events

As it is known analytically, extreme events – defined as maximum values of sam-
ples of fixed size (such as ”block maxima” of time series) – follow distributions
which converge towards Generalized Extreme Value (GEV) distributions (for suf-
ficiently large samples). Thus, GEV distributions are fitted to data of extreme
events in order to estimate annualities and future occurrences. For a more de-
tailed presentation of extreme value assessment and applications we refer to [3].
The GEV distributions, expressing the probability that the maximum of a sample
is beneath the values, are given by:
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They are defined on
{

s : 1+ ξ s−ν
γ > 0

}
and have a location parameter,ν ∈ R, a

scale parameter,γ ∈ R
+, as well as a shape parameter,ξ ∈ R. According to the

shape, one distinguishes three cases:

1. the Gumbel distribution (ξ = 0),

2. the heavy-tailed Fréchet distribution (ξ > 0), and

3. the bounded-tailed Weibull distribution (ξ < 0).

Empirical damage distributions
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Figure 1

We consider the EM-DAT database[2] collected by the Centre for Research on
Epidemiology of Disasters (CRED) in version v12.07 as created on Oct-28-2009.
The information listed for each event entry consists of: start, end, country, loca-
tion, type of disaster, sub-type, name, number of people killed, numberof people
affected, an estimated damage, and an ID. For the years 1950-2008 we extract the
information on floods, which include general floods, flash floods, as well asstorm
surges respectively coastal floods, and obtain 3469 entries worldwide,while for
1225 entries an estimated damage in units of Million US-Dollars is available.
In Figure 1(a) we show the estimated probability densities,p̃(D), for all flood
damage values of the database. However, since one may argue that theresult
could be biased by regional differences, in Fig. 1(b) we showp̃(D) for only those
floods that occurred in the USA. Thus, we can neglect influences due to differ-
ent economic power of different countries. In order to reduce possible trends in
the data, we also exclude floods before 1980 and plot the distribution densityfor
Europe in Fig. 1(c). In any case, we observe broad distributions with damages
reaching the order of 10 Billion US-Dollars. We would also like to note that we
obtain similar results for the number of killed or affected people as well as for
other natural disasters.
In the simplest approach, the tail of the probability densities can be described
with a functional form involving one parameter, namely a power-law according
to

p̃(D) ∼ D−α , (2)

where we findα ≈ 2 [Fig. 1(a-c)]. Such a size distribution is also known as
Zipf’s law and is found in many different fields, such as word usage, citysizes,
firm sizes, wealth, intensity of solar flares, . . . . For an overview we referto [4]
and references therein. Minor deviations from Eq. (2) for floods with small dam-
age, could be due to the fact that small damages are more likely to be missing in
the database.

Determining damage functions
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If we assume a unique relation between the magnitude of an extreme event(such
as high river or sea levels),s, and the damage,D(s), that is caused by it, we can
take advantage of Eq. (1) and (2) and relate them. Therefore, we writethe proba-
bility as an integral over the density and substitute the magnitude with the damage(
s → D = D(s)

)
:

s2
Z

s1

p(s)ds =

D(s2)
Z

D(s1)

p(s(D))
ds
dD

dD =

D(s2)
Z

D(s1)

p̃(D)dD . (3)

Here,p(s) and p̃(D) are the probability density of the extreme event and the dam-

age, respectively. Furthermore, the density transformation
p̃(D)

p(s)
= ds

dD
was used

(see illustrative Fig. 2). Next, choosings1 = s0 (the lower bound of the GEV-
distribution) ands2 = s, we obtain the equation

P(s) =

D(s)
Z

D(s0)

p̃(D)dD , (4)

which holds for any (reasonable) damage distribution densityp̃(D).
Using Eq. (2), i.e. the probability densitỹp(D) = AD−α (α > 1) as found in

Fig. 1(a-c), we write

P(s) =

D(s)
Z

D(s0)

AD−αdD = 1−Dα−1
(s0)

D1−α
(s) , (5)

whereA = (α−1)Dα−1
(s0)

such that̃p(D) is normalized inD ∈ [D(s0),D(s→∞)).
Solving the equation forD(s) we get
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(
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) 1
1−α . (6)

Finally, we insert the Gumbel distribution, i.e. Eq. (1) withξ = 0, and obtain
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Asymptotically it increases exponentially, which becomes clear when the follow-
ing approximation is employed.
The Generalized Pareto Distribution (GPD) is an approximation of the distribu-
tion function of the levels above the thresholdsT , under the condition that the
maximum of the sample exceeds the threshold[3]. Then, the probability distribu-
tion of maxima that exceed the threshold is described by

PGPD
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
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whereγ̃ = γ + ξ(sT − ν) ands ∈ [sT ,∞). Using the Gumbel case (ξ = 0) of the
GPD instead of Eq. (1) in Eq. (6) we obtain that asymptotically the damage in-
creases exponentially,

D(s) = D(sT )e
s−sT

γ̃(α−1) , (9)

which holds fors ∈ [sT ,∞). Thus, if we assume power-law distributed damages
as well as extreme events following the Gumbel distribution, then the damages
caused by such natural disasters must (asymptotically) depend exponentially on
the magnitude of the corresponding extreme events.

However, this exponential damage function is based on damages following
power-law distributions [Fig. 1(a-c)]. Since a one parameter description might
not be sufficient, we also elaborate a two parameter fit, namely a stretched expo-
nential according to

p̃(D) ∼
a
b

Da−1e−
Da
b , (10)

wherea and b are the parameters (a,b > 0). Equation (10) is also known as
Weibull distribution, see e.g.[5] and references therein. For the same data as be-
fore the fitted curves are shown in Fig. 1(d-f) providing values for the exponenta
roughly between 1/3 and 1/2.
Thus, now the integral relating the extreme eventss and damagesD, Eq. (4), is
over p̃(D) from Eq. (10), instead of Eq. (2)
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(s0)
b such thatp̃(D) is normalized inD ∈ [D(s0),D(s→∞)). Solving

for D(s) we find
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[
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] 1

a
. (12)

Finally, we insert the Gumbel distribution, i.e. Eq. (1) withξ = 0, and obtain

D(s) =
[
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])] 1
a
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which asymptotically increases as a power-law with exponent 1/a. To make this
clearer, we again employ GPD and insert Eq. (8) instead of Eq. (1) into Eq. (12).
For the Gumbel case (ξ = 0) we find

D(s) =

(
Da

(sT ) +
b
γ̃
(s− sT )

) 1
a

. (14)

Accordingly, for a between 1/3 and 1/2 we obtain the asymptotic power-law
relationD(s) ∼ s3 or D(s) ∼ s2. Thus, if we assume stretched exponential dis-
tributed damages as well as extreme events following the Gumbel distribution,
then the damages caused by such natural disasters must (asymptotically) depend
as a power-law on the magnitude of the corresponding extreme events.

Discussion
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In summary, we characterize distributions of recorded flood damages,argue that
they are caused by extreme events, and employ density transformation todeduce
damage functions relating both. For Gumbel distributed extreme events (ξ = 0)
we find

D(s) ∼





e
s

α−1 for p̃(D) ∼ D−α with α > 1

s
1
a for p̃(D) ∼

a
b Da−1e−

Da
b with a > 0.

(15)

The functional forms are illustrated in Fig. 3, which also includes the cases
ξ 6= 0. For power-law distributed damages and Weibull distributed extreme events
(ξ < 0) in average the damage increases faster than exponentially with the mag-
nitude. For Fréchet distributed extreme events (ξ > 0) the opposite is the case.
Intuitively, since in the Weibull case the extreme events have an a boundedtail,
a steeper damage function is needed to result in the same damage distribution
as the Gumbel case [Fig. 3(a)]. In the Fréchet case, which has a fattertail than
the Gumbel distribution, a less steep damage function is sufficient to result in
the same damage distribution as the Gumbel case. Similar arguments hold for
stretched exponential damages [Fig. 3(b)].
The obtained results can have important applications and implications for the
assessment of damages due to natural disasters. In particular, in the scope of
climate change, knowledge about upcoming costs is demanded[6]. Changing
climate comes along with evolving extreme value statistics and corresponding
damage functions need to be adapted accordingly.
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