About an indirect determination of damage functions
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In order to estimate future damage caused by natural disastés desirable to know|
the damage caused by single events. So called damage funptimride — for a naturall
disaster of certain magnitude — a specific damage value. Howievgeneral, the func-
tional form of such damage functions is unknown. We studydib&ibutions of recorded
damage values and deduce which damage functions lead tad@tdbutions when the|
natural disasters obey Generalized Extreme Value statidtie find broad damage distr}-
butions and investigate two possible functional forms tarabterize the data. In the ca:
of Gumbel distributed extreme events, a power-law distitinudensity with an exponen
close to 2 (Zipf's law) implies an exponential damage fumeti Stretched exponentigl
distribution densities imply power-law damage functiomsthe case of Weibull (Fréchet]
distributed extreme events we find correspondingly steépes éteep) damage function.

We consider the EM-DAT databa$® collected by the Centre for Research omowever, this exponential damage function is based on damages fajlowin
Epidemiology of Disasters (CRED) in version v12.07 as created on 8@0P9. power-law distributions [Fig. 1(a-c)]. Since a one parameter descriptightm
The information listed for each event entry consists of: start, end,toglmca- not be sufficient, we also elaborate a two parameter fit, namely a stretched ex
tion, type of disaster, sub-type, name, number of people killed, nuafipeople nential according to

affected, an estimated damage, and an ID. For the years 1950-2088nact the (D) ~ gDa—le—

02
o, 10,
information on floods, which include general floods, flash floods, as wstbas 10)

o Surges respectively coastal floods, and obtain 3469 entries worldwidle, for  wherea andb are the parameters,0 > 0). Equation (10) is also known as

1225 entries an estimated damage in units of Million US-Dollars is available. Weibull distribution, see e.g5] and references therein. For the same data as be-
In Figure 1(a) we show the estimated probability densitfg®), for all flood fore the fitted curves are shown in Fig. 1(d-f) providing values for theegpta
damage values of the database. However, since one may argue thesutte roughly between 13 and 1/2.

-could be biased by regional differences, in Fig. 1(b) we spti) for only those Thus, now the integral relating the extreme everasd damageB, Eq. (4), is
floods that occurred in the USA. Thus, we can neglect influences due éo-difbver p(D) from Eq. (10), instead of Eq. (2)

ent economic power of different countries. In order to reduceiptessends in

the data, we also exclude floods before 1980 and plot the distribution déarsity Py

L a a
Motivation Europe in Fig. 1(c). In any case, we observe broad distributions witragas Psy = / BB D*le~% dD
. ) reaching the order of 10 Billion US-Dollars. We would also like to note that we
One of the consequences which are expected to come along with gloiat wabtain similar results for the number of killed or affected people as welbas f .

ing is an increased number of climate related disasters. The questiooh bis:
governments or insurances is, which costs certain regions, couwiregn the
globalized economy are facing.

Natural disasters, such as floods or storms, represent extrente.ewnelependent

€other na_tural disasters. _ - B ) — 1 Be’Eg , (1)
In the simplest approach, the tail of the probability densities can be dedcrib
with a functional form involving one parameter, namely a power-law afing

2
o whereB = e~ such thatp(p) is normalized inD € D), D(s ). Solving

of the problem on how to project future extreme events, one is interesteréh Pioy~D°, (2) forD we find

damage can typically be expected from an extreme event of certainitoncein . " . a H

One approach to tackle this question is to separate the statistics of extreme e\\évé;’?;elawvfg:fs fOLZIH[:J:llg'I n];(aiyf)gjlﬁesr:gt‘ f?eEéesﬂiarlgztﬁgrésuiggeknown as D) = |:D(50J —bin(1- P(S))} . (12)
from the damage caused by them. The former can be obtained frosumea /o oo caith ‘intensity of solar flares, ... For an overview we fefgt]  Finally, we insert the Gumbel distribution, i.e. Eq. (1) wétk= 0, and obtain

ments, such as water level records, but the latter needs to be estimatethby

empirical studies or by theoretical considerations.

Accordingly, so called damage functions provide a monetary value @scéidn
of the magnitude of an event, such as the maximum level of a flood. One-di:
guishes damage functions on a microscopic scale from those on asvegio
scale. The former describes the typical costs of damages to singts, zaseh
as residential buildings, and the latter describes costs of damages toel@gs,
such as a city. This macroscopic damage function represents a ctioypo$
information on asset values, their location, and their vulnerability, se¢le.df

'sm? database.

and references therein. Minordeviationsfrum Eq (2) for floods withlstam- . 1
age, could be due to the fact that small damages are more likely to be griissin D = [D?SU) ~bin (l— exp[—e’TD} ° (13)

which asymptotically increases as a power-law with expongat To make this
clearer, we again employ GPD and insert Eq. (8) instead of Eq. (1) int(1E2y
For the Gumbel cas€ & 0) we find
Determining damage functions

ik

b
Dy = (Df‘m#r;(s— sT)) . (14)

not specified we refer to macroscopic damage functions, in what fallows P Poy
The question we address is, which functional form a damage functics fole Accordingly, fora between 13 and ¥/2 we obtain the asymptotic power-law
low so that the distribution of extreme events transforms to the distribution of relation D) ~ ~ 3 or Dy ~ 2. Thus, if we assume stretched exponential dis-
damages. Relating these two distributions we obtain macroscopic danrage fu tributed damages as well as extreme events following the Gumbel distribution
tions. Therefore we analyze flood data assembled by CRfBnd find broad then the damages caused by such natural disasters must (asympladieatind
damage distributions. In order to characterize them, we elaborate twodnal as a power-law on the magnitude of the corresponding extreme events.
forms. PodD=pds
s o Discussion
Extreme Events y
Figure 2 100 10°
As itis known analytically, extreme events — defined as maximum valuesrof s3f ye assume a unique relation between the magnitude of an extreme(svent 10° F (a) Zipf's law _e#e . 4 (b) stretched exp. 71-s"
ples of fixed size (such as "block maxima” of time series) — follow distribitionys high river or sea levels3, and the damag®s), that is caused by it, we can 10 1L Weibul: <0
which converge towards Generalized Extreme Value (GEV) distributions(f-  take advantage of Eq. (1) and (2) and relate mem Therefore, wetheitroba- &£ 185 3 — Gumbel: &=0
ficiently large samples). Thus, GEV distributions are fitted to data of extrefjfity as an |megral over the density and substitute the magnitude with the damage, 10° [ - Frechet: &0
events in order to estimate annualities and future occurrences. Foreadmor (s—D=D g 10
tailed presentation of extreme value assessment and applications me f8fe S 10
The GEV distributions, expressing the probability that the maximum of a lEamp 10° P~
is beneath the valu are given by: 10
& are given by /p ds— / Poo) g dD, / Po ®) ) ‘ . . @
_1 0 5 10 15 20 10 10
eV exp[— (1+§5;v") ‘] for§ #£0 Btep Ber) magnitude s magnitude s
P = . (1) Here, P(s) @ndp(p) are the probability density of the extreme event and the dam- Figure 3
e T for =0.
exp[ € } oré age, respectively. Furthermore, the density transforma%i@n o Was used In summary, we characterize distributions of recorded flood damaggse that
(see illustrative Fig. 2). Next, choosirsg = s (the lower bound of the GEV- they are caused by extreme events, and employ density transformatieduoe
They are defined 0'%5 1+ESY > 0} and have a location parameters: R, & - yiirintion) ands, — s, we obtain the equation damage functions relating both. For Gumbel distributed extreme eviert9)
scale parametey,€ R*, as well as a shape paramefer; R. According to the we find
shape, one distinguishes three cases: Dig) s _ .
o P = Bio)dD () ex1  for ppp) ~ D witha > 1
1. the Gumbel distributior(= 0), (C] (D)5 D)~ i 0 (15)
Digy) sa for pip) ~ £D*'e” & witha> 0.
2. the heavy-tailed Fréchet distributidn¢ 0), and . o .
. . o which holds for any (reasonable) damage distribution demsgy. The functional forms are illustrated in Fig. 3, which also includes the cases
3. the bounded-tailed Weibull distributiod ¢ 0). Using Eq. (2), i.e. the probability densifyp) = AD~* (a > 1) as found in &+ 0. For power-law distributed damages and Weibull distributed extrenmeseve
Fig. 1(a-c), we write (€ < 0) in average the damage increases faster than exponentially with the mag-
o, nitude. For Fréchet distributed extreme evedts-(0) the opposite is the case.
© Intuitively, since in the Weibull case the extreme events have an a botmitied
Empirical damage distributions — / AD “dD=1- D?so)lD(ls)“= (5) a steeper damage function is needed tolresult in the same damage distributio
Digy) as the Gumbel case [Fig. 3(a)]. In the Fréchet case, which has atéttéran
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the Gumbel distribution, a less steep damage function is sufficient to result in
whereA = (o — 1)0{15;)1 such tha@m is normalized irD € [|)(50>,D(S m)), the same damage qistribution as Fhe Gumbel case. Similar arguments hold for
Solving the equation foD s we get stretched exponential damages [Fig. 3(b)]- o o
The obtained results can have important applications and implications for the
Dy =Digy (1P )131 ®) assessment of damages due to natural disasters. In particular, icothe of
8= =) © . climate change, knowledge about upcoming costs is demaisilecChanging
Finally, we insert the Gumbel distribution, i.e. Eq. (1) wéth- 0, and obtain climate comes along with evolving extreme value statistics and corresponding

| damage functions need to be adapted accordingly.
Dy =D(sy) <l—exp[—e’TDﬁ @
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The Generalized Pareto Distribution (GPD) is an approximation of the distribu-
tion function of the levek above the thresholsr, under the condition that the
maximum of the sample exceeds the threski@|dThen, the probability distribu-
tion of maxima that exceed the threshold is described by
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GPD instead of Eq. (1) in Eq. (6) we obtain that asymptotically the damage in-
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creases exponentially,

which holds fors € [sr, ). Thus, if we assume power-law distributed damages

as well as extreme events following the Gumbel distribution, then the damage o [
caused by such natural disasler§ must (asymptotically) dependexgaily on Programme2007-2013 RISl ootennegoet
the magnitude of the corresponding extreme events.
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