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Motivation

City Growth, see:

- Rozenfeld HD, et al.,
PNAS 105, 2008

- “New Laws of
City Growth”
AGSOE 8.1
24.3.2009
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A successrul theory of corporate growth should include both the z{
external and internal factors that affect the growth of a com- . .

pany' %, Whereas traditional models emphasize production-
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related influences such as investment in physical capital and in
research and development', recent models™ recognize the
equal importance of organizational infrastructure. Unfortu-
nately, no exhaustive empirical account of the growth of compa-
nies exists by which these models can be tested. Here we present a
broad, phenomenological picture of the dependence of growth on
company size, derived from data for all publicly traded US
manufacturing companies between 1975 and 1991. We find
that, for firms with similar sales, the distribution of annual
(logarithmic) growth rates has an exponential form; the spread
in the distribution of rates decreases with increasing sales as a
power law over seven orders of magnitude. A model wherein the
probability of a company’s growth depends on its past as well as
present sales accounts for the former observation. As the latter
obhservation applies to companies that manufacture products of
all kinds, organizational structures common to all firms might
well be stronger determinants of growth than production-related

FIG. 2 Standard deviation of the one-year growth rates of the sales (circles)
and of the one-year growth rates of the number of employees (triangles) as
a function of the initial values. The solid lines are least-square fits to the
data with slopes f = 0.15 + .03 for the sales and § = 0.16 £+ 0.03 for
the number of employees. We also show error bars of one standard
deviation about each data point. These error bars appear asymmetric as
the ordinate is a log scale.
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Motivation

online community: members sending messages

¢ o
o @Abery membe%
a sends
/ \ message to b \
o o

either following an existing link m, — m, + 1
or creating a new one kot — kOUt 41
=> growth process
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Online community data

online community 1 (OC1):
- 80,000 members

- 12.5 million messages

- 63 days

online community 2 (OC2):
- 30,000 members

- 500,000 messages

- 492 days

both are dating-communities
also used for social interaction in general
completely anonymous



Typical activity (OC1)
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Growth process

for each member:

cumulative number of messages m(t)
o my
ogarithmic growth rate r=1Iln—
my

petween two time-steps to, 11

two quantities:

conditional average growth (’F(mo)> — <’f“ m0>

cond. standard deviation U(T?’lo) — CT(”“ mo)

see e.g. M.H.R. Stanley et al., nature, 1996.



Analogy to other data,
such as city growth

(1) The members of a community represent a
population similar to the population of a
country.

(2) The number of members fluctuates and
typically grows analogous to the number of
Cities of a country.

(3) The activity or number of links of individuals
fluctuates and grows similar to the size of cities.



Growth process: results
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Optimal times

members with m >0 and m,—m >0
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Growth process: results
—p

U(mo) ~ TN OC1: Bocp = 0.22 -
OC2: 5001 = 0.17 2
shuffled: [rnq = 1/2

Gibrat's law of proportionate growth

multiplicative process
to explain broad distributions (log-normal)

involves assumption: (r(mg)) = const.

> e =0 o(mg) = const.
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o O
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Temporal correlations

- shuffling destroys temporal correlations,
leading to B.,q = 1/2

- this suggests 3 ~ 0.2 might be due to
temporal correlations

- we use Detrended Fluctuation Analysis (DFA)
to quantify long-term correlations
in the activity (messages per day): uu(t)

fluctuation function: F(At) ~ (At)H
1/12< H<1 =>lc



Temporal correlations: results

1

= a 0C{

[~ At .“—/-'._',»"'-

. b OC1
o—e real
shuffled

P

10’ 10° 10°

- d OC2

e—e real
shuffled

10°

10°
total number of messages, M

10’ 10° 10°

10*

1.2

o
o0

O
o

H (10 <

o
o

At <

o
o

H (32 <

o
~

- 63)

= At <

— 200)



Missing link
derivation leads to:
60=1—H
accordingly:

f~02 = H=O0.8 OCs
Bma =1/2 = H,q=1/2 shuffled
bg=0 = Hg=1 Gibrat's law



Growth process: out-degree

<r(k,)>, o.(k,)

see also: Maillart T, et al., arXiv 0807.0014, 2008
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Growth process: preferential attachment

preferential attachment
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see also: Barabasi AL and Albert R, Science 286, 1999



Conclusions

1. scaling in growth of number of messages
or out-degree implies that active members
are better predictable than less active ones

2. human activity sending messages Is
long-term correlated

3. scaling in growth Is due to
long-term correlations

o(mg) ~ mgﬁ

=> this may also be the case for
other data



Thank you for your attention.

paper submitted to PNAS: Rybski D, et al.



