Analyzing the phase statistics of phenological records: fluctuations and correlations with temperature

#### Diego Rybski Anne Holsten, Jürgen P. Kropp

EGU General Assembly 2011, Vienna NP4.1: Time Series Analysis in the Geosciences – Concepts, Methods & Applications 4.4.2011 – 8:30 (room 13, EGU2011-291)



#### Phenology: Introduction

- describes the timing of certain periodical development stages of species throughout the year (I.L. Hudsen, Climatic Change 100, 2010)
- e.g. flowering, fruit ripening, leaf coloring, foliation
- well-known concept in ecology

# Motivation



Figure: courtesy Anne Holsten

#### Phenology: some previous work

- phenological phases are sensitive to temperature
- shifts of phases indicate change of climate
- earlier onset of plant phases of 3.8 days per 1°C (Europe) (N. Estrella et al., Clim. Res. 39, 2009)
  - negative shifts for spring phases
  - positive shifts for fall phases
- cherry blossom in Kyoto advanced by 7 days (1971-2000) (Y. Aono, K. Kazui, Int. J. Climatology 28, 2008)

#### Phenology: our approach

- previous studies concentrate on response of specific phases or groups
- no integrated approach assessing changes
- we describe the system from a statistical physics view point
- propose a phenological index
- simultaneously characterizes shifts of spring and fall phases

#### Phenological records

North Rhine-Westphalia (NRW)

- collected by the German Weather Services (DWD)
- observations by volunteers (2-3 times per week)
- 1951-2006
- 75 phases (159)
- 17 sites in NRW (660)

also: records of annual mean temperature

### North Rhine-Westphalia



First, we want to study how strongly phenological phases fluctuate. Therefore, we apply the Rayleigh measure:

$$\sigma_{\phi} = \sqrt{\langle \cos \phi \rangle^2 + \langle \sin \phi \rangle^2} \,,$$

where  $\langle \cdot \rangle$  is the average over time, separately for each phenological plant.

### Fluctuations



Figure: 1: Hazel, *Corylus Avellana*: flowering; 112: European Alder, *Alnus Glutinosa*: flowering; 114: Cornel Cherry, *Cornus Mas*: flowering; and 177: Wild Brier, *Rosa Canina*: fruit ripening.

### Method

For the phase  $\phi_{p,t}$ , i.e. the day of the year when the phenological event p occurs in year t, we consider the phase anomaly

$$\varphi_{\boldsymbol{p},\boldsymbol{t}} = \phi_{\boldsymbol{p},\boldsymbol{t}} - \langle \phi \rangle_{\boldsymbol{p}} \,,$$

where  $\langle \cdot \rangle$  denotes the average over time and  $\langle \phi \rangle$  is defined by  $\tan \langle \phi \rangle := \frac{\langle \sin \phi \rangle}{\langle \cos \phi \rangle}.$ 

Linear regression to  $\varphi_{p,t}$  against  $\langle \phi \rangle_p$ :

$$\varphi_{\mathbf{p},t}^* = \alpha_t \langle \phi \rangle_{\mathbf{p}} + \beta_t \,.$$

Eliminating  $\varphi$  one obtains

$$\phi = \langle \phi \rangle (\alpha + 1) + \beta \,,$$

i.e.  $\alpha$  corresponds to a temporary change of frequency.

# example: $\varphi = \phi - \langle \phi \rangle$ vs. $\langle \phi \rangle$



Figure: Dülmen near Münster

# Schematic illustration



Figure: Idealized cycle of advantageous and disadvantageous phenological years as well as premature and delayed years.

# Phenological Index



Figure: Dülmen 1951-2006. (a) slope  $\alpha$  (pheno-index), (b) intercept  $\beta$ , (c) root mean square deviations from the fit  $\sigma_{\varphi}$ , and (d) number of phenological phases used for each year.

### Comparison with temperature



Figure: Dülmen 1951-2006: phenological index and annual mean temperature.

### Correlations with mean temperature



# Discussion and conclusions

Pheno-index & phenological cycle  
Assuming 
$$C(\phi) = A\sin(\phi + \lambda) + B$$
 and  
 $\int_{-\pi}^{\pi} [A\sin(\langle \phi \rangle + \langle \lambda \rangle)] d\langle \phi \rangle = 0$  we find:  
 $\int_{-\pi}^{\pi} [A\sin(\langle \phi \rangle (\alpha + 1) + \beta + \lambda) \rangle] d\langle \phi \rangle \approx 2\pi A \alpha \sim \alpha$ .

#### Phenological records

- regression to  $\phi \langle \phi \rangle$  versus  $\langle \phi \rangle$  can be used to characterize anomalies of the phenological cycle.
- slope  $\alpha$  represents a temporary change of frequency and intercept  $\beta$  a temporary phase shift.
- spring and late summer phases exhibit the largest fluctuations while the early summer and fall phases exhibit the smallest fluctuations.

# Thank you for your attention!

D. Rybski et al., Physica A 390, 2011, 680-688.

http://www.rybski.de/diego/