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1. Network fluctuation analysis (kFA)



Motivation

Degree correlations

likelihood that nodes of given degree are connected

assortative/disassortative mixing:
positive/negative correlations

measures:
Pearson correlation coefficient
average nearest neighbor degree
conditional probability p(k1, k2)
. . .

disassortativity tightly related to fractality of complex networks



Average nearest neighbor degree

Figure: R. Pastor-Satorras et al. PRL 2001.



Conditional probability p(k1, k2)

Figure: L.K. Gallos et al. PRL 2008.



Motivation

But:

only correlations between nearest neighbor nodes,
i.e. distance 1

much of the rich topological information gets lost

how can correlations be measured at larger

distances?



Fluctuation Analysis

We propose a Degree Fluctuation Analysis (kFA):
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Fluctuation Analysis

We propose a Degree Fluctuation Analysis (kFA):

1 Consider the shortest path between the nodes i and j

(if it is not unique, we consider an arbitrary one).

2 Extract the sequence of degrees (kl) along this path of
length dij .

3 Calculate the average Kij = 〈kl〉 of the sequence (kl).

4 Find the shortest paths between all pairs of nodes and
determine the corresponding averages, Kij ∀ i 6= j .

5 Calculate the fluctuation function F (d) = σ(Kij |d), the
conditional standard deviation of the Kij at distance d .

In analogy to Fluctuation Analysis in time series analysis



Long-range (anti-) correlations

If the covariance, C (d) ∼ 〈(ki − 〈k〉)(kj − 〈k〉)|d〉, between
the degrees at distance d scales as

C (d) ∼ d−γ for positive correlations (assortative) or
C (d) ∼ −(d−γ) for negative correlations (disassortative)

then we expect
F (d) ∼ dαk ,

where αk = −γ/2.

Fluctuation exponent differs by 1 from usual Hurst-like
exponent: α = αk + 1.
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If the covariance, C (d) ∼ 〈(ki − 〈k〉)(kj − 〈k〉)|d〉, between
the degrees at distance d scales as

C (d) ∼ d−γ for positive correlations (assortative) or
C (d) ∼ −(d−γ) for negative correlations (disassortative)

then we expect
F (d) ∼ dαk ,

where αk = −γ/2.

Fluctuation exponent differs by 1 from usual Hurst-like
exponent: α = αk + 1.

αk > −1/2 positive correlations (assortative)
αk = −1/2 uncorrelated
αk < −1/2 negative correlations (disassortative)



Long-range (anti-) correlations
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Figure: Degrees of nodes versus distance along shortest paths for
(a) fractal network model and (b) pin yeast network.



1. Barabási-Albert model
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Figure: Degree fluctuation functions for the BA model. (a-c) show F (d),
(d) shows for m = 2 the slopes of exponential fits as a function of the
network sizes. 100 configurations.



2. Cayley tree at percolation transition

Figure: z = 3 (source: wikipedia)

percolation transition: pc = 1
z−1

topological dimension of giant component: df = 2



2. Cayley tree at percolation transition
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Figure: Degree fluctuation function of the Cayley tree at percolation
transition (z = 3, n = 150). Dotted maroon lines: quantiles enclosing
90% (100 configurations).



3. Fractal network model

C.M. Song, S. Havlin, and H.A. Makse, nature physics, 2006.

Figure: generation n, m new nodes, x new links, probability e (source:
H.D. Rozenfeld and H.A. Makse, 2009)

fractal dimension: df = ln(2m+x)
ln(3−2e)

degree distribution: p(k) ∼ k−(1+ ln(2m+x)
ln m )



3. Fractal network model
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Figure: Degree fluctuation functions for the fractal model (n = 4).
Dotted maroon lines: quantiles enclosing 90% (250 configurations). Inset
in (c): n = 3 and n = 5 (25 configurations).



3. Fractal network model
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Figure: Exponents α = αk + 1 of the fractal network model. Power-law
fit for n = 5: α ∼ eǫ, ǫ ≈ 0.2.



4. Real-world networks
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Figure: Degree fluctuation functions for real-world networks.



Comparison with fractal dimension
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Findings

BA model: exponential decay

Cayley tree: αk = −1/2 (uncorrelated)

fractal network model:
e = 0: αk = −1 (long-range anti-correlated)
e = 1: exponential decay

real-world networks: power-law decay

fluctuation exponent complementary information to
fractal dimension
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vary parameters m and x

analytical description

also other spatial correlations:
various network properties (clustering, betweenness, . . . )
additional information available (time of addition, activity, . . . )



2. Data



Data

Motivation

In economic geography it is believed that economic activity is
influenced by

space, i.e. spatial distance

network, i.e. network distance

topic, i.e. distance in terms of content

Ergo:
small research fields via defined research topics
collaboration networks via co-authorship



Data

Data collection (Hennemann S. et al., submitted 2011)

publications from isi web of science (2004-2008)
network of institutions with at least 1 common publication

keyword nodes links diameter

bluetooth 439 515 13
image-compression 599 690 12
heart-valve 835 1589 17
tissue-engineering 2505 7443 10

keyword universities res. inst. companies hospitals

bluetooth 0.57 0.13 0.27 0.03
image-compression 0.69 0.13 0.14 0.04
heart-valve 0.42 0.18 0.07 0.34
tissue-engineering 0.44 0.19 0.17 0.20

further information: countries, geo-tagging



3. Company networks



Measuring long-range correlations

Applying fluctuation analysis

(”fluctuation” in space – not in time)

each node is associated to 1 of 4 types
(universities, research institutes, companies, hospitals)

pick one type
replace the attribute of each node with

”1” if type matches
”0” if it does not match

network fluctuation analysis on the 0/1-nodes attributes

repeat for all 4 types

correlation patterns are reflected in fluctuation functions



Results: fluctuation functions
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Results: fluctuation exponents
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Results: degree fluctuation functions
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Results: exponent cross-plot
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Findings

scaling in the spatial fluctuations of institutions

both, positive and negative correlations

strength seems to depend on the network (i.e. topic)

shuffling reduces correlations

also correlations in the degree

fluctuation exponents of type and degree seem to be
anti-correlated



4. Spatial embedding



Motivation

role of proximity is discussed in geography, economics,
and innovation research

faster and cheaper communication and traveling

”shrinking world”

to which extent reflected in company networks, i.e.
collaboration networks?



map: heart-valve



example: tissue engineering
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Figure: probability to have a link at distance d – not distribution of
distances



collapse
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Thank you for your attention!
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