Company networks and their correlations beyond nearest neighbors

Diego Rybski Hernán D. Rozenfeld, Stefan Hennemann

International Conference on Econophysics 2011 East China University of Science and Technology Third Teaching Building 5.6.2011 – Session C

Outline

- Network fluctuation analysis (*k*FA)
- 2 Data
- Ompany networks
- Spatial embedding

1. Network fluctuation analysis (kFA)

Degree correlations

- likelihood that nodes of given degree are connected
- assortative/disassortative mixing: positive/negative correlations
- measures:
 - Pearson correlation coefficient
 - average nearest neighbor degree
 - conditional probability $p(k_1, k_2)$

• . . .

disassortativity tightly related to *fractality* of complex networks

Average nearest neighbor degree

FIG. 2. The average connectivity $\langle k_{nn} \rangle$ of the nearest neighbors of a node depending on its connectivity k for the 1998 snapshot of the Internet, the generalized BA model with $\gamma = 2.2$ (Ref. [8]), and the fitness model (Ref. [18]). The solid line has a slope -0.5. The scattered results for very large k are due to statistical fluctuations.

Figure: R. Pastor-Satorras et al. PRL 2001.

Conditional probability $p(k_1, k_2)$

FIG. 1 (color online). The joint degree distribution $P(k_1, k_2)$ of WWW (top row) and Internet at the router level (bottom row) before renormalization (left), after renormalization forbidding multiple links (center), and including multiple links (right).

Figure: L.K. Gallos et al. PRL 2008.

But:

- only correlations between nearest neighbor nodes, i.e. distance 1
- much of the rich topological information gets lost
- how can correlations be measured at larger distances?

Fluctuation Analysis

• Consider the shortest path between the nodes *i* and *j* (if it is not unique, we consider an arbitrary one).

- Consider the shortest path between the nodes *i* and *j* (if it is not unique, we consider an arbitrary one).
- Extract the sequence of degrees (k_i) along this path of length d_{ij}.

- Consider the shortest path between the nodes *i* and *j* (if it is not unique, we consider an arbitrary one).
- Extract the sequence of degrees (k_i) along this path of length d_{ij}.
- Calculate the average $K_{ij} = \langle k_l \rangle$ of the sequence (k_l) .

- Consider the shortest path between the nodes *i* and *j* (if it is not unique, we consider an arbitrary one).
- Extract the sequence of degrees (k_i) along this path of length d_{ij}.
- Calculate the average $K_{ij} = \langle k_l \rangle$ of the sequence (k_l) .
- Find the shortest paths between all pairs of nodes and determine the corresponding averages, K_{ij} ∀ i ≠ j.

- Consider the shortest path between the nodes *i* and *j* (if it is not unique, we consider an arbitrary one).
- Extract the sequence of degrees (k_i) along this path of length d_{ij}.
- Calculate the average $K_{ij} = \langle k_l \rangle$ of the sequence (k_l) .
- Find the shortest paths between all pairs of nodes and determine the corresponding averages, K_{ij} ∀ i ≠ j.
- Calculate the fluctuation function $F(d) = \sigma(K_{ij}|d)$, the conditional standard deviation of the K_{ij} at distance d.

In analogy to Fluctuation Analysis in time series analysis

Long-range (anti-) correlations

If the covariance, $C(d) \sim \langle (k_i - \langle k \rangle)(k_j - \langle k \rangle)|d \rangle$, between the degrees at distance d scales as

 $C(d) \sim d^{-\gamma}$ for positive correlations (assortative) or $C(d) \sim -(d^{-\gamma})$ for negative correlations (disassortative)

then we expect

 $F(d) \sim d^{\alpha_k}$,

where $\alpha_k = -\gamma/2$.

Fluctuation exponent differs by 1 from usual Hurst-like exponent: $\alpha = \alpha_k + 1$.

Long-range (anti-) correlations

If the covariance, $C(d) \sim \langle (k_i - \langle k \rangle)(k_j - \langle k \rangle)|d \rangle$, between the degrees at distance d scales as

 $C(d) \sim d^{-\gamma}$ for positive correlations (assortative) or $C(d) \sim -(d^{-\gamma})$ for negative correlations (disassortative)

then we expect

 $F(d) \sim d^{\alpha_k}$,

where $\alpha_k = -\gamma/2$.

Fluctuation exponent differs by 1 from usual Hurst-like exponent: $\alpha = \alpha_k + 1$.

 $\begin{array}{ll} \alpha_k > -1/2 & \mbox{positive correlations (assortative)} \\ \alpha_k = -1/2 & \mbox{uncorrelated} \\ \alpha_k < -1/2 & \mbox{negative correlations (disassortative)} \end{array}$

Long-range (anti-) correlations

Figure: Degrees of nodes versus distance along shortest paths for (a) fractal network model and (b) pin yeast network.

1. Barabási-Albert model

Figure: Degree fluctuation functions for the BA model. (a-c) show F(d), (d) shows for m = 2 the slopes of exponential fits as a function of the network sizes. 100 configurations.

2. Cayley tree at percolation transition

Figure: z = 3 (source: wikipedia)

percolation transition: $p_{\rm c} = rac{1}{z-1}$ topological dimension of giant component: $d_{\rm f} = 2$

2. Cayley tree at percolation transition

Figure: Degree fluctuation function of the Cayley tree at percolation transition (z = 3, n = 150). Dotted maroon lines: quantiles enclosing 90% (100 configurations).

3. Fractal network model

C.M. Song, S. Havlin, and H.A. Makse, nature physics, 2006.

Fig. 1. Construction of a pure fractal network. Example of network model with parameters n = 0, 1, 2; m = 2; x = 2; e = 0.

Fig. 2. Construction of network. With probability e the link between hub remains, otherwise, with probability 1-e it is replaced for another link between new nodes.

Figure: generation n, m new nodes, x new links, probability e (source: H.D. Rozenfeld and H.A. Makse, 2009)

 $\begin{array}{ll} \text{fractal dimension:} & d_{\mathrm{f}} = \frac{\ln(2m+x)}{\ln(3-2e)} \\ \text{degree distribution:} & p(k) \sim k^{-\left(1 + \frac{\ln(2m+x)}{\ln m}\right)} \end{array}$

3. Fractal network model

Figure: Degree fluctuation functions for the fractal model (n = 4). Dotted maroon lines: quantiles enclosing 90% (250 configurations). Inset in (c): n = 3 and n = 5 (25 configurations).

3. Fractal network model

Figure: Exponents $\alpha = \alpha_k + 1$ of the fractal network model. Power-law fit for n = 5: $\alpha \sim e^{\epsilon}$, $\epsilon \approx 0.2$.

4. Real-world networks

Figure: Degree fluctuation functions for real-world networks.

Comparison with fractal dimension

network human homology pin yeast homology metabolic kFAbox covering (Song et al.) $\alpha_k \simeq -0.74$ $d_f \simeq 2.5$ $\alpha_k \simeq -0.53$ $d_f \simeq 2.2$ $\alpha_k \simeq -0.83$ $d_f \simeq 2.5$ $\alpha_k \simeq -0.88$ $d_f \simeq 3.3$

Findings

- BA model: exponential decay
- Cayley tree: $\alpha_k = -1/2$ (uncorrelated)
- fractal network model:
 - e = 0: $\alpha_k = -1$ (long-range anti-correlated)
 - e = 1: exponential decay
- real-world networks: power-law decay
- fluctuation exponent complementary information to fractal dimension

Findings

- BA model: exponential decay
- Cayley tree: $\alpha_k = -1/2$ (uncorrelated)
- fractal network model:
 - e = 0: $\alpha_k = -1$ (long-range anti-correlated)
 - e = 1: exponential decay
- real-world networks: power-law decay
- fluctuation exponent complementary information to fractal dimension
- vary parameters *m* and *x*
- analytical description
- also other spatial correlations:
 - various network properties (clustering, betweenness, ...)
 - \bullet additional information available (time of addition, activity, ...)

2. Data

Data

Motivation

In economic geography it is believed that economic activity is influenced by

- space, i.e. spatial distance
- network, i.e. network distance
- topic, i.e. distance in terms of content

Ergo: small research fields via defined research topics collaboration networks via co-authorship

Data collection (Hennemann S. et al., submitted 2011)

publications from isi web of science (2004-2008) network of institutions with at least 1 common publication

keyword	nodes	links	diameter		
bluetooth	439	515	13		
image-compression	599	690	12		
heart-valve	835	1589	17		
tissue-engineering	2505	7443	10		
keyword	univers	ities	res. inst.	companies	hospitals
keyword bluetooth	univers 0.57	ities ,	res. inst. 0.13	companies 0.27	hospitals 0.03
keyword bluetooth image-compression	univers 0.57 0.69	ities ,	res. inst. 0.13 0.13	companies 0.27 0.14	hospitals 0.03 0.04
keyword bluetooth image-compression heart-valve	univers 0.57 0.69 0.42	ities	res. inst. 0.13 0.13 0.18	companies 0.27 0.14 0.07	hospitals 0.03 0.04 0.34

further information: countries, geo-tagging

3. Company networks

Applying fluctuation analysis

("fluctuation" in space - not in time)

- each node is associated to 1 of 4 types (universities, research institutes, companies, hospitals)
- pick one type
- replace the attribute of each node with
 - "1" if type matches
 - "0" if it does not match
- $\bullet\,$ network fluctuation analysis on the 0/1-nodes attributes
- repeat for all 4 types

correlation patterns are reflected in fluctuation functions

Results: fluctuation functions

Results: fluctuation functions

Results: fluctuation exponents

Results: degree fluctuation functions

Results: exponent cross-plot

- scaling in the spatial fluctuations of institutions
- both, positive and negative correlations
- strength seems to depend on the network (i.e. topic)
- shuffling reduces correlations
- also correlations in the degree
- fluctuation exponents of type and degree seem to be anti-correlated

4. Spatial embedding

- role of *proximity* is discussed in geography, economics, and innovation research
- faster and cheaper communication and traveling
- "shrinking world"
- to which extent reflected in company networks, i.e. collaboration networks?

map: heart-valve

example: tissue engineering

Figure: probability to have a link at distance d – not distribution of distances

collapse

Thank you for your attention!

Acknowledgment:

- Organizers of the conference
- German Academic Exchange Service (DAAD)

Publications:

- Long-range degree-correlations: Rybski D. et al. EPL 2010
- Company networks: Rybski D. et al. (in prep.)
- Myth of global science collaboration: Hennemann S. et al. (submitted 2011)

http://diego.rybski.de/