

Long-term correlations in climate

Diego Rybski

25.1.2007, 14:00 Levich Institute City College of New York

Justus-Liebig-Universität Gießen - Institut für Theoretische Physik III

Outline

1. Basics of long-term correlations

- a) Definition
- b) Quantification
- c) Effects
- d) Occurrence

2. Long-term correlations in climate

- a) Overview
- b) in temperature records (climate model)
- c) Detection problem(temperature reconstructions)

Part 1 – Basics of long-term correlations

Time series

Statistical properties

 $C(s) \sim s^{-\gamma} \quad 0 < \gamma < 1$

- sequence of values
- stochastic
- measured record

- probability densities
- auto-correlations

Long-term correlations

<u>auto-correlation function</u>: $C(s) = \frac{\langle \tau_i \tau_{i+s} \rangle}{\langle \tau_i^2 \rangle} = \frac{1}{(N-s)\langle \tau_i^2 \rangle} \sum_{i=1}^{N-s} \tau_i \tau_{i+s}$ (average zero)

correlation-time:

$$s_{ imes} = \int_0^\infty C(s) \mathrm{d}s$$
 .

- finite (short-term), e.g. exp. decay: $C(s) = e^{-s/s_{\times}}$
- infinite (long-term), e.g. power-law:

Quantification

Methods:

direct estimation of $C(s) \sim s^{-\gamma}$ correlation exponent power spectrum: $P(f) \sim f^{-\beta}$ spectral exponent fluctuation analysis: $F^{(n)}(s) \sim s^{\alpha}$ fluctuation exponent

<u>Relations:</u>

$$egin{aligned} & \gamma &= 1 - \beta & \ & \gamma &= 2 - 2 \alpha & \end{aligned} egin{aligned} & eta &= 2 lpha - 1 & \ & \gamma &= 2 - 2 lpha & \end{aligned}$$

Different cases:

 $\begin{array}{ll} \alpha\simeq 0{,}5 & \mbox{uncorrelated} \\ 0{,}5<\alpha< 1{,}0 & \mbox{long-term correlated} \\ 1{,}0<\alpha & \mbox{non-stationary} \end{array}$

1. cumulative sum

$$Y_n = \sum_{i=1}^n \tau_i$$

1. cumulative sum

$$Y_n = \sum_{i=1}^n \tau_i$$

2. separate into windows

1. cumulative sum

$$Y_n = \sum_{i=1}^n \tau_i$$

- 2. separate into windows
- 3. determine best polynomial fit in each

1. cumulative sum

$$Y_n = \sum_{i=1}^n \tau_i$$

- 2. separate into windows
- 3. determine best polynomial fit in each
- 4. residuals

$$Y_i(S) = Y_i - p_{\nu}(i)$$

5. fluctuations in each window

$$F_{\nu}^{2}(S) = \langle Y_{i}^{2}(S) \rangle = \frac{1}{S} \sum_{i=1}^{S} [Y_{(\nu-1) \cdot S+i}(S)]^{2}$$

6. average over all segments (fluctuation function)

$$F(S) = \sqrt{\frac{1}{K_S} \sum_{\nu=1}^{K_S} F_{\nu}^2(S)}$$

Effects of long-term correlations

Moving average

Moving average

Occurring slopes

Occurring slopes

Clustering of extreme events

Examples of time series

Occurrence of long-term correlations

- Hydrology (Hurst, H.E. 1951, ...)
- DNA sequences (Peng et al. 1994, ...)
- temperature records (Koscielny-Bunde et al. 1996, ...)
- heart rate (Bunde et al. 2000, ...)
- ...

Part 2 – Long-term correlations in climate

Overview

(a) Koscielny-Bunde, E., et al., 2006(c) Kantelhardt, J.W., et al., 2006

(b) Monetti, R.A., et al., 2003(d) Eichner, J.F., et al., 2003

Long-term correlations in temperature records

• Eichner et al., PRE, 2003:

fluctuation exponents close to **0.65** for continental sites, larger values for island sites (broad range)

• Monetti et al., Physica A, 2003:

values around **0.8** (broad range) for sea surface temperatures (SST) (temperature reconstructions)

• Fraedrich et al., PRL, 2003:

vanishing correlations for inner continental sites,1/f-noise for SST (real and model records)

• Kiraly et al., Tellus A, 2006:

complex spatial patterns (around 0.67 - continental)

• Huybers et al., Nature, 2006:

latitude dependence, large at the Equator (climate model)

Global coupled general circulation model ECHO-G

Model with $96 \times 48 = 4608$ grid-points,

two runs:

- historical simulation (1000-1990, 991 years)
- control run (1000 years)

ECHO-G: DFA of 2m-temperatures historical simulation

ECHO-G: DFA of 2m-temperatures control run

Examples of fluctuation functions

ECHO-G: DFA of 2m-temperatures

daily records

0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.025

biannual averages

ECHO-G: DFA of 2m-temperatures

daily records

biannual averages

ECHO-G: summary

We find:

- long-term persistence on scales up to 200 years
- continental sites have fluctuation exponents between 0.6 and 0.7 (historical simulation)
- near the Equator the exponents are smaller (ENSO)
- for ocean sites the exponents depend on the latitude, small values at the Equator (opposite of Huybers2006)
- in the control run the long-term correlations are weaker, the latitude dependence is more pronounced (forcings are important, see Vyushin et al., GRL, 2004)
- biannual averages: stronger long-term correlations, less pronounced latitude dependence

We know:

- Long-term correlations exist in temperature records and lead to
 - a large variability and
 - a pronounced mountain-valley structure that resembles trend-like behavior

Question:

- Can the recent increase in the temperature of the Northern Hemisphere (NH) be attributed to these long-term correlations?

Our approach:

- a) We analyze several centennial NH temperature reconstructions applying *Detrended Fluctuation Analysis* (DFA) and find that their variability can be attributed to long-term correlations.
- b) We compare the variations of the reconstructions with the most recent temperature changes in the instrumental record.
- c) We obtain an indication whether the recent warming can be related to natural factors or not.

Considered temperature reconstructions

Jones, P.D., et al., Holocene 8(4), **1998**

Mann, M.E., et al., Geophys. Res. Lett. 26(6), **1999**

Briffa, K.R., Quat. Sci. Rev. 19(1-5), **2000**

Esper, J., et al., Science 295(5563), **2002**

McIntyre, S. and McKitrick, R., Energy Environ. 14(6), **2003**

Moberg, A., et al. Nature 433(7026), **2005**

http://www.ncdc.noaa.gov/paleo/recons.html

Distribution and correlation

approximately Gaussian long-term correlations on scales up to centuries

Enhanced variability

structure by long-term correl.

Moving average differences $\Delta T_j(m, L)$ and standard deviation $\sigma(m, L)$

Since the T_j are Gaussian-distributed, the $\Delta T_j(m, L)$ also Gaussian distributed, characterized by standard dev. $\sigma(m, L)$

Instrumental temperature record (NH)

Probability analysis

Details: D. Rybski, A. Bunde, S. Havlin, H. v. Storch, GRL 33, L06718, 2006.

Summary

- Reconstructed Northern Hemisphere temperature records show pronounced long-term correlations
- Our analysis does not support the claim, that the most recent warming, observed by quality controlled instrumental data, is consistent with the hypothesis of purely natural dynamics.

Thank you for your attention