About growth and correlations in cities and social communities

Diego Rybski

H.D. Rozenfeld, J.S. Andrade, Jr.,
M. Batty, H.E. Stanley, H.A. Makse

S.V. Buldyrev, S. Havlin, F. Liljeros

X. Gabaix

9.12.2009 16:15 - 17:30
Martin-Luther-Universität Halle-Wittenberg
Kolloquium der Fachgruppe Theoretische Physik
Outline

1. Motivation

2. New laws of city growth
 (a) City Clustering Algorithm (CCA)
 (b) City size (Zipf's law)
 (c) City growth (Gibrat's law)

3. Human activity, long-term correlations, and Gibrat's law
 (a) Online community data
 (b) Growth process
 (c) Temporal correlations
 (d) Missing link

4. Summary, conclusions, and outlook
Motivation

Scaling behaviour in the growth of companies

* Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
† Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan, Israel
‡ Department of Finance and Economics, School of Management, Boston University, Boston, Massachusetts 02215, USA

A successful theory of corporate growth should include both the external and internal factors that affect the growth of a company. Whereas traditional models emphasize production-related influences such as investment in physical capital and in research and development, recent models recognize the equal importance of organizational infrastructure. Unfortunately, no exhaustive empirical account of the growth of companies exists by which these models can be tested. Here we present a broad, phenomenological picture of the dependence of growth on company size, derived from data for all publicly traded US manufacturing companies between 1975 and 1991. We find that, for firms with similar sales, the distribution of annual growth rates has an exponential form; the spread in the distribution of rates decreases with increasing sales as a power law over seven orders of magnitude. A model wherein the probability of a company’s growth depends on its past as well as present sales accounts for the former observation. As the latter observation applies to companies that manufacture products of all kinds, organizational structures common to all firms might well be stronger determinants of growth than production-related factors.

FIG. 2 Standard deviation of the one-year growth rates of the sales (circles) and of the one-year growth rates of the number of employees (triangles) as a function of the initial values. The solid lines are least-square fits to the data with slopes $\beta = 0.15 \pm 0.03$ for the sales and $\beta = 0.16 \pm 0.03$ for the number of employees. We also show error bars of one standard deviation about each data point. These error bars appear asymmetric as the ordinate is a log scale.

NATURE · VOL 379 · 29 FEBRUARY 1996
Motivation

logarithmic growth rate:

\[r(S_0) \equiv \ln R(S_0) = \ln(S_1/S_0) \]

conditional average growth rate:

\[\langle r(S_0) \rangle \sim S_0^{-\alpha} \]

conditional standard deviation:

\[\sigma(S_0) \sim S_0^{-\beta} \]
Motivation

\[\sigma(S_0) \sim S_0^{-\beta} \]

<table>
<thead>
<tr>
<th>Category</th>
<th>(\beta)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>firms</td>
<td>0.15 - 0.18</td>
<td>Stanley et al. 1996</td>
</tr>
<tr>
<td>countries GDP</td>
<td>0.15 +/-0.03</td>
<td>Canning et al. 1998</td>
</tr>
<tr>
<td>research costs at universities</td>
<td>0.25</td>
<td>Plerou et al. 1999</td>
</tr>
<tr>
<td>voluntary organizations</td>
<td>0.19</td>
<td>Liljeros et al. 2003</td>
</tr>
<tr>
<td>scientific output</td>
<td>0.28 - 0.40</td>
<td>Matia et al. 2005</td>
</tr>
<tr>
<td>religious activity</td>
<td>0.16</td>
<td>Picoli et al. 2008</td>
</tr>
</tbody>
</table>

... which are the processes behind this non-trivial emergent scaling?
Motivation: Gibrat's law

1. What is the origin of broad distributions? (such as of firm sizes)

2. R. Gibrat proposed 1931 a multiplicative process (law of proportional effect)

3. Unit size is iteratively multiplied with random variable

4. Central Limit Theorem: summing up logs results in normal distribution, and log-normal distribution of original size

5. Assumption: iid random variable (growth rate independent of unit size, aka Gibrat's law)
New laws of city growth
Measurement problem: what is a city?

Examples:
- New York City / Jersey City
- Boston / Cambridge
- Greater London

“administrative” or “legal” definitions may lead to spurious statistical properties

“Metropolitan Statistical Areas” (MSA) built by the US Census are indeed agglomerations (use socio-economic factors)

Only top cities (time-consuming, hardly transferable to other countries)
Population data

Two data sets

1. USA:
 - FIPS-code (Federal Information Processing Standard)
 - partition the area into units with approx. 1500-8000 inhabitants (average ~4000)
 - total population: ~300 million

2. GB:
 - gridded population (cell size 200m)
 - total population: ~59 million
Example: USA, NYC, Manhattan

- CCNY
- Harlem
- Central Park
- East River
- NYU
- Hudson River
City Clustering Algorithm (CCA)

We define a new way to construct cities:

- unbiased
- automated
- fast
- can be easily used in any country
- based only on location of population
- allows studying cities at different levels of observation
City Clustering Algorithm

Idea of CCA:

City as maximal size cluster of connected subunits
City Clustering Algorithm

2 parameters: coarse-graining level ℓ
threshold density D_* (set to 0)
CCA in Great Britain

CCA applied to Greater London
CCA in the USA
CCA in the northeastern USA
Zipf's law

\[P(S) \sim S^{-\zeta - 1}, \quad \zeta = 1 \]

The distribution of sizes follows a power-law with \(\zeta = 1 \).

Zipf's law has been documented for words, firms, size of exports, and many more.

Does the city size distribution obey Zipf’s law?
Zipf's law

Understanding the origin of this regularity is an ongoing task.

Typically, studies use MSAs for the top 200 cities, i.e. Eeckhout ('07)

Eeckhout ('07)
Uses data on all administrative cities
Finds a very good log-normal fit
Zipf's law for the USA

![Graph showing Zipf's law for the USA](image)
Comparison with MSA: Northeastern USA
Correlations between MSA and CCA
Zipf's law for GB
Zipf's law for areas

USA

GB

$P(A)$ vs A [km2]
Population vs area

USA

Slope = 0.958

GB

Slope = 1.065
City size take home message

- Zipf's law holds pretty well for size above 12000 (USA) or 5000 (GB) inhabitants

- Zipf's law for areas

- Population is proportional to area

- Density is roughly independent of city size

- How about other countries?
City growth

\[S_0 \] Population of a city at time 0.

\[S_1 \] Population of a city at time 1.

\[S_1 = R(S_0)S_0 \quad \text{growth factor} \]

\[r(S_0) \equiv \ln R(S_0) = \ln(S_1/S_0) \quad \text{growth rate} \]

\[\langle r(S_0) \rangle \sim S_0^{-\alpha} \]

\[\sigma(S_0) = \sqrt{\langle r(S_0)^2 \rangle - \langle r(S_0) \rangle^2} \]

\[\sigma(S_0) \sim S_0^{-\beta} \]
City growth in the USA (1990-2000)

\[\langle r(S_0) \rangle \sim S_0^{-\alpha}, \quad \alpha = 0.28 \]

\[\sigma(S_0) \sim S_0^{-\beta}, \quad \beta = 0.20 \]

Are not in agreement with Gibrat's Law (stating that average growth rate and standard deviation are constant)
City growth in the GB (1981-1991)

\[\langle r(S_0) \rangle \sim S_0^{-\alpha}, \quad \alpha = 0.17 \]

\[\sigma(S_0) \sim S_0^{-\beta}, \quad \beta = 0.27 \]
City growth in Africa (1960-1990)

\[\langle r(S_0) \rangle \sim S_0^{-\alpha}, \quad \alpha = 0.21 \]

\[\sigma(S_0) \sim S_0^{-\beta}, \quad \beta = 0.19 \]
Correlations

\[\delta_j = \text{population growth of cell } j \]

\[S_1 = S_0 + \sum_{j=1}^{N_i} \delta_j \]

\[\langle (\delta_j - \bar{\delta})(\delta_k - \bar{\delta}) \rangle \sim \frac{\Delta^2}{|\vec{x}_j - \vec{x}_k|^{\gamma}} \]

\[\beta = \gamma/4 \]

When \(\gamma = 2 \quad \beta = 1/2 \]

\[\gamma_{GB} = 0.93 \]
City growth take home message

- **CCA** identifies cities based only on geographical features

- **Scale-invariant growth** mechanisms at different geographical scales (violation of Gibrat's Law)

- Power-law standard deviation is due to long-range spatial **correlations** in the growth

- How about other countries?
Human activity, long-term correlations, and Gibrat's law
Online community

members sending messages

member a sends message to member b

either following an existing link or creating a new one

$\Delta k_a^\text{out} \rightarrow k_a^\text{out} + 1$

$\Delta m_a \rightarrow m_a + 1$

=> growth process
Online community data

online community 1 (OC1):
- 80,000 members
- 12.5 million messages
- 63 days

online community 2 (OC2):
- 30,000 members
- 500,000 messages
- 492 days

both are dating-communities
also used for social interaction in general
completely anonymous
Typical activity (OC1)

(a) send

(b) receive

(c)

(d)

(e)

(f)

$\mu(t)$

$\nu(t)$

-time [days]-
Growth process

for each member:

cumulative number of messages $m(t)$

logarithmic growth rate $r = \ln \frac{m_1}{m_0}$

between two time-steps t_0, t_1

two quantities:

conditional average growth $\langle r(m_0) \rangle = \langle r \mid m_0 \rangle$

cond. standard deviation $\sigma(m_0) = \sigma(r \mid m_0)$
Analogy to other data, such as city growth

(1) The members of a community represent a population similar to the population of a country.

(2) The number of members fluctuates and typically grows analogous to the number of cities of a country.

(3) The activity or number of links of individuals fluctuates and grows similar to the size of cities.
Growth process: results

- **a** OC1
 - $\langle r(m_0) \rangle$
 - $\sigma(m_0)$
 - $\sim m_0^{-0.22}$

- **b** OC2
 - $\langle r(m_0) \rangle$
 - $\sigma(m_0)$
 - $\sim m_0^{-0.17}$

- **c** shuf. OC1
 - $\langle m_0 \rangle$
 - $\sigma(m_0)$
 - $\sim m_0^{-1/2}$

- **d** shuf. OC2
 - $\langle m_0 \rangle$
 - $\sigma(m_0)$
 - $\sim m_0^{-1/2}$
Optimal times

(a) DC1

(b) DC2

members with $m_0 > 0$ and $m_{1-t,T} > 0$

$\begin{align*}
t_0 (t_1 = T) & \quad [\text{days}] \\
0 & \quad 20 \quad 40 \quad 60
\end{align*}$

$\begin{align*}
t_0 (t_1 = T) & \quad [\text{weeks}] \\
0 & \quad 20 \quad 40 \quad 60
\end{align*}$
Gibrat's law of proportionate growth

multiplicative process to explain broad distributions (log-normal)

involves assumption: \(\langle r(m_0) \rangle = \text{const.} \)

\(\sigma(m_0) = \text{const.} \)

\[\beta_G = 0 \]
Temporal correlations

- shuffling destroys temporal correlations, leading to $\beta_{\text{rnd}} = 1/2$

- this suggests $\beta \approx 0.2$ might be due to temporal correlations

- we use Detrended Fluctuation Analysis (DFA) to quantify long-term correlations in the activity (messages per day): $\mu(t)$

fluctuation function: $F(\Delta t) \sim (\Delta t)^H$

$1/2 < H < 1 \Rightarrow \text{ltc}$
Temporal correlations: results

a OC1

$F(\Delta t) \sim \Delta t^{0.75}$

b OC1

$H \sim \Delta t^{0.5}$

c OC2

$F(\Delta t) \sim \Delta t^{1.0}$

d OC2

$H \sim \Delta t^{0.5}$
Missing link

derivation leads to:

\[\beta = 1 - H \]

accordingly:

\[\beta \approx 0.2 \implies H \approx 0.8 \quad \text{OCs} \]
\[\beta_{\text{rnd}} = 1/2 \implies H_{\text{rnd}} = 1/2 \quad \text{shuffled} \]
\[\beta_G = 0 \implies H_G = 1 \quad \text{Gibrat's law} \]
Derivation

\[r = \ln \frac{m_1}{m_0} \approx \frac{\Delta m}{m_0} \]

\[\Delta m = \sum \mu(t) = m_1 - m_0 \]

\[r \approx \frac{1}{m_0} \sum \mu(t) \]

\[[r(m_0) - \langle r(m_0) \rangle]^2 = \frac{1}{m_0^2} \left(\sum (\mu(t) - \langle \mu(t) \rangle) \right)^2 \]

\[\langle [r(m_0) - \langle r(m_0) \rangle]^2 \rangle \approx \frac{1}{m_0^2} \sum \sum \sigma^2_\mu C(j - i) \]
Derivation ...

\[
\langle [r(m_0) - \langle r(m_0) \rangle]^2 \rangle \approx \frac{1}{m_0^2} \sum \sum \sigma_{\mu}^2 C(j - i)
\]

\[
C(\Delta t) = \frac{1}{\sigma_{\mu}^2(T - \Delta t)} \sum_{T-\Delta t}^{T} \mu(t)\mu(t + \Delta t) \quad \langle \mu \rangle = 0
\]

\[
C(\Delta T) \sim (\Delta T)^{-\gamma}
\]

\[
\langle [r(m_0) - \langle r(m_0) \rangle]^2 \rangle \sim \frac{1}{m_0^2} \sigma_{\mu}^2 (\Delta t)^{2-\gamma}
\]

\[
\Delta t = x t_0 \quad m_0 \sim t_0
\]
Derivation

\[\sigma(m_0) \sim \sigma_{\mu} m_0^{-\gamma/2} \quad \sigma(m_0) \sim m_0^{-\beta} \]

\[\beta = \gamma/2 \]

\[\gamma = 2 - 2H \]

\[\beta = 1 - H \]
Simulations
Growth process: out-degree

see also: Maillart T, et al., arXiv 0807.0014, 2008
Growth process: preferential attachment

see also: Barabasi AL and Albert R, Science 286, 1999
Human activity take home message

- Scaling in growth of number of messages or out-degree implies that active members are better **predictable** than less active ones.

- **Human activity** sending messages is long-term correlated.

- Scaling in growth is due to long-term correlations: \(\sigma(m_0) \sim m_0^{-\beta} \)

=> this may also be the case for other data.
Summary, conclusions, and outlook

1. Growth processes are common in nature, society and technology

2. Most systems comprise complex growth features (generalized Gibrat's law)

3. The growth correlation exponent is related to correlations in the dynamics

4. Original Gibrat's law is a special case corresponding to 1/f-noise
http://www.rybski.de/diego/